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The crossover from two- to three-dimensional critical behavior of nearly antiferromagnetic itinerant elec-
trons is studied in a regime where the interplane single-particle motion of electrons is quantum mechanically
incoherent because of thermal fluctuations. This is a relevant regime for very anisotropic materials like the
cuprates. The problem is studied within the two-particle self-consisEPSQ approach, which has been
previously shown to give a quantitative description of Monte Carlo data for the Hubbard model. It is shown
that the TPSC approach belongs to the « limit of the O(n) universality class. However, contrary to the
usual approaches, cutoffs appear naturally in the microscopic TPSC theory so that parameter-free calculations
can be done for Hubbard models with arbitrary band structure. A general discussion of universality in the
renormalized-classical crossover fraiw2 tod=3 is also given[S0163-18206)04021-0

[. INTRODUCTION persion relation. The TPSC approach also allows one to
study the case where the instability of the itinerant electrons
A simple model of itinerant antiferromagnets is providedis at an incommensurate wave vector, but in this paper we
by electrons on a lattice with short-range repulsion. In therestrict ourselves to the case where the order is at the anti-
low-temperature phase, the system is in a spin density wavierromagnetic wave vector. The self-consistent-renormalized
(SDW) state. In three dimensions, above the transition temapproach of Moryi& cannot deal with the incommensurate
perature, the electrons form a so-calteghrly antiferromag- case withouta priori information. Even though it has the
netic Fermi liquid Traditional mean-field techniques for same critical behavior as the TPSC approach, it does not
studying SDW instabilities of Fermi liquids fail completely allow one to obtain quantitative parameter-free results from a
in low dimensions. In two dimensions, for example, the ran-microscopic Hamiltonian.
dom phase approximatiofiRPA) predicts finite-temperature We first show in full generality that the TPSC approach
antiferromagnetic transitions while this is forbidden by thegives the leading term of the critical behavior in a Bx-
Mermin-Wagner theorem. Nevertheless, one can study unpansion. In other words, it gives the—c limit of the
versal critical behavior using various forms of renormaliza-O(n) model wheren=3 is the physically correctHeisen-
tion group treatments appropriate either for the sttohgr  berg limit. It will be apparent that there is no arbitrariness in
the weak-coupling limit§:® The self-consistent-renormalized the cutoff so that, given a microscopic Hubbard model, no
approach of Moryifalso satisfies the Mermin-Wagner theo- parameter is left undetermined. One can go with the same
rem in two dimensions. Since cutoff-dependent scales artheory from the noncritical to the critical regime.
left undetermined by all these approaches, they must be We then show that the previously studied two-
found by other methods. For example, in the strong-couplinglimensional2D) critical regimes, namely, quantum critiéal
limit, the spin-stiffness constant of the nonlinearmodel  and renormalized classichlare reproduced here to leading
must be determined from Monte Carlo simulations. In theorder in 1h. In the quantum-critical regime, one usually dis-
weak-coupling case however, Monte Carlo simulations ardinguishes two casésmodel A, where the paramagnetic
limited to very small systems, of order X0 which do not Fermi surface does not intersect the magnetic Brillouin zone,
allow one to study much of the critical regime. and model B where it does. This distinction is important in
Recently, the two-particle self-consistenfTPSQ  the quantum-critical regime because it changes the dynami-
approach was developed to obtain from a microscopic cal critical exponent. In this paper, we also give results on
model aquantitative description of itinerant electrons not model C, the case of perfect nesting. In this case, the micro-
only far from phase transitions, but also in the critical re-scopic approach shows that modifications to frequency-
gime. It was showh that in this approach the Mermin- independent thermodynamic properties can arise. In particu-
Wagner theorem is satisfied and that, away from the criticalar, in the two-dimensional perfect-nesting case the usual
regime, the approach gives quantitative agreement witlexponential dependence of correlation length on temperature
Monte Carlo simulations of the nearest-neighband exp(stT) can be modified to be roughly exqs{/T%) in some
next-nearest-neighb‘bHubbard model in two dimensions. temperature region of the renormalized-classical regime.
Quantitative agreement is also obtained as one enters the Then we study the renormalized-classical crossover from
narrow critical regime accessible in Monte Carlo simula-d=2 to d=3 in the highly anisotropic case of weakly
tions. The approach is restricted to the one-band Hubbardoupled planes.The general theory of such a crossover is
model with on-site interaction, but is valid for arbitrary dis- given in Appendix D, along with a discussion of universal
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crossover functions. In the main text it is shown that in theThe nearest-neighbor quasi-two-dimensional case will be an-
highly anisotropic case the crossover can occur in a rathasther case of interest later,

unusual regime, namely;<kgTy<t, wheret|(t,) is the
interplane(intraplang hopping integral andy is the three-
dimensional Nel temperature. This regime is unusual be-

cause even though one is dealing with an itinerant fermiorbne approximates spin and charge susceptibiliigs x c
C

system, the inequalit§4|<kBTN_means that the sm_allest _fer-_ by RPA-like forms but with two different effective interac-
mionic Matsubara frequency is larger than the dispersion 3!

L ; . ; ions Ug, and Uy, which are then determined self-
the parallel direction, making the three-dimensional ban onsistently. Although the susceptibilities have a RPA func-

structure irrelevant for one-particle properties. In the lan-; ; :

o tional form, the physical properties of the theory are very
9“""9? of Refs. 10 and 11’ there IS "o coherent band MOgifferent from the RPA because of the self-consistency con-
tion” in the parallel direction. Physically, the extent of the ditions onUs, andUy,. The necessity to have two different

thermal de Braglie wave packet in the direction I:’erpendicu'effective interactions for spin and for charge is dictated by

lar to the planes is smaller than the distance between planet%e Pauli exclusion orinci N AT
I : A principlénz)=(n,) which implies that
a situation that does not occur in a usual Fermi liquid smc% th q lated t | local pai lati
in the isotropic case the inequalikg T<<Er implies that the OtN Xsp @N0Xch arle (;e ade oon yhon?I ocal pair (cj:_orrg ation
thermal de Broglie wavelength is much larger than the lattic Eggtr':g <i2T T\jlgtsunb:rz ’folrﬁglgijsr; G\’Neuﬁg\’g'?& ':ifc‘i‘t'gsm
spacing. Another way of describing this<kgTy<t, situa- |
tion is to say that the itinerant electrons become unstable apies
the two-particle level while their motion in the third direction 1
is still quasiclassical, or quantum incoherent, at the single- (n%>+<nf)+2<nTnl>—n2=—NZ xer(Q) (4)
particle level because of thermal fluctuations. In the more AN
usual situation, coherence at the one-particle level is estaland
lished before the phase transition, namelyT <t <t, . 1
These two regimes have been extensively discussed in the <n$>+<nf>—2<mm>= WE Xsd @), (5)

d=1tod=3 cg%siiover of Luttinger liquids by Bourbonnais

€= —2t, (cok,a, +cokya, ) —2t|cok,a . ©)]

The TPSC approaéh® can be summarized as follows.

and co-worker
The above  single-particle  incoherent  regime
t<kgTy<t, is likely to be the relevant one for high-
temperature superconductors. While the parent insulatin
compound L.QCU.O‘.‘ ha; been extensively s_tud|ed in the with our RPA-like forms foryg,, xcn On the right-hand side
strong-coupling limit, this type of compound is expected to p
. ; . 4 ) L " leads to
be in an intermediate-coupling regime. Hence, it is legitimate

where=1/T, n=(n;)+(n,), 9=(q,iq,) with q the wave
vectors of anN-site lattice, and withiq,=2#inT the
bosonic Matsubara frequencies. The Pauli principle
9n§>=<n(,> applied to the left-hand side of both equations

to approach the problem not only from the strong-coupling 1 Yo(d)
limit 12 but also from the weak-coupling side, especially with n+2(n;n;)— n=——> —-—— (6)
the TPSC approach where all cutoffs are determined by the AN 1+ EU wxo(9)
microscopic model. This problem is commented on at the 2 Mo
end of the paper. More detailed quantitative comparisons _
with experiment will r later. 1

th experiment will appear late n—2<mm>=[m2 Xo(Q) , @

1 -
1= S Uspro(@)
II. TWO-PARTICLE SELF-CONSISTENT APPROACH
with xo(q) the susceptibility for noninteracting electrons.

If (nyn,) is known,U i, andU, are determined from the
above equations. This key quantity;n ) can be obtained
H=— t (cte +ct e )+UuS non 1 from Monte Carlo S|mglat|ons or by _other means. However,

(%0’ 1(CioCio+ o) El T @) it may be also be obtained self-consistehtly adding to the
above set of equations the relation

In this expression, the operatoy, destroys an electron of (nen))
spin ¢ at sitei. Its adjointc], creates an electron. The sym- Usp=0;,(0)U, g;(0)= ~
metric hopping matrixt; ; determines the band structure. (ny(ny)
Double occupation of a site costs an enekdydue to the Equationq7) and(8) define a set of self-consistent equations
screened Coulomb interaction. In the present section, thfer Ug,that involve only two-particle quantities. We call this

hopping parameters need not be specified. We work in unitapproach two-particle self-consistent to contrast it with other
wherekg=1 and#=1. As an example that occurs later, the conserving approximations like Hartree-Fock or fluctuation
dispersion relation in thed-dimensional nearest-neighbor exchange approximatiofFLEX) (Ref. 14 that are self-

We start from the Hubbard model

8

model when the lattice spacing asis given by consistent at the one-particle level, but not at the two-particle
level. The above proceduraeproduces both Kanamori-

d Brueckner screening as well as the effect of Mermin-Wagner

fk:_th (coka). ) thermal fluctuations, giving a pha;e transition onl){ at zero

i=1 temperature in two dimensions, as discussed
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in the following section. Quantitative agreement with Monte (vE)

Carlo simulations on the nearest-neighband next-nearest- En= T (13)
neighbor modefsis obtained for all fillings and tempera- m

tures in the weak- to intermediate-coupling regibhe 8t. is the single-particle thermal de Broglie wavelength and

We emphasize that deep in the critical regime, the ansatZy ) is the Fermi velocity averaged over the Fermi surface.
Eq.(8), fails in the sense tha, | (0) eventually reaches zero This provides a partial justification for the usual proceddre
atT=0 in the nearest-neighbor Hubbard model at half-fillingthat eliminates completely the Fermionic variables and de-
while there is no reason to believe that this really happensscribes the system in terms of collective Bosonic variables,
The physically appropriate choice in the renormalized-as is usually done in Hubbard-Stratonovich types of
classical regime described below is to keep the value ofpproaches?

g;,(0) fixed at its crossover-temperature value. In the nu- We first show that when most of the temperature depen-
merical calculations also described below, we are never fadence of the susceptibility comes from the temperature de-
enough fromTy to have to worry about this. The value of pendence ofsU, the RPA-like form that we have implies

g;,(0) is the one that is determined self-consistently. thatin any dimensiorthe dynamical exponent is=2 while
the classical exponent/v=2— 7 takes the valuey/v=2.
IIl. CRITICAL BEHAVIOR OF THE TPSC APPROACH The other classical exponentis determined from the self-
IN ARBITRARY DIMENSION consistency condition, Eq7). We show that the correspond-

ing universality class is the same as tie> limit of the
In this section we discuss the critical behavior of theO(n) classical model. This universa”ty class is known in
TPSC approach in arbitrary dimension for hypercubic systurn to be the same as that of the spherical mdtale
tems. It is convenient to set the lattice spacing to unity.  conclude this discussion with the lower critical dimension
As one approaches a phase transition, one enters the-2 There the exponent cannot strictly be defined since,
I’enormalized-claSSica‘egime,l where classical thermal fluc- as was shown befoﬂethe correlation |ength diverges expo-
tuations dominate. In this case, the Universality class fohentia”y at zero temperature instead of diverging as a power

static properties is fully determined by two exponents. Dy- |aw at finite temperature. This behavior is also the one ex-
namics must also be considered so that one introduces a djected from thex—c model, although nesting leads to dif-

namical critical exponent. o ferent temperature dependences that are explained further.
We consider the case where the transition is at the anti-
ferromagnetic wave vectorQq in d dimensions: 1. Exponentsy/v and z in arbitrary dimension

Q,=(m,m), Qz=(m,m,m), etc. SinceQ is at the corner of
the Brillouin zone, the spin susceptibilityy(Qg) is always,
by symmetry, an extremum. This extremum is the absolut
maximum at half-filling not only in the nearest-neighbor
hopping model, but also in more general models with next- R

nearest-neighbor hoppirffid® The nearest-neighbor model is X2(0,@)= Xo(%,) _ (12
discussed in more detail at the end of this section. It has S 1— ZU_yR

some special features resulting from the additional nesting 2 spto( )
symmetry. In the two-dimensional case, we also comment on

the peculiarites of nesting and on quantum-critical The small energy scale is set by
behavior:?

The antiferromagnetic transition is characterized by the
gppearance of a small energy scale or, equivalently, a large
correlation length, in the retarded spin susceptibility

oU=Ups.—Ug (13

A. Renormalized-classical regime where the temperature-dependent "mean-field critical” in-

As one decreases the temperature sufficiently close to tHeraction
phase transition, there appears a small energy sttaléhat
measures the proximity to the phase transition as determined Unt,c=2/x0(Qq,0) (14

by the Stoner criterion. This scale is defined more precisel :
in Eq. (13). The key physical point is that this energy scale is)(S the temperature-dependent valuely, at which a phase

X L transition would occur according to mean-field theory. In the

the smallest. In particular, it is smaller than the temperature.”. = X :
vicinity of this point the small energy scal#) allows us to

approximateXEP(q,w) by expanding the denominator near

g~Qq and w~0 to obtain

so that the zero Matsubara frequency representing classical
behavior dominates all others. The self-consistency condi-
tions, Eqs.(7), (8), then lead to a strong temperature depen- u sp§§

dence of8U. This is the renormalized-classical regifin

this regime, the antiferromagnetic correlation lengttbe- where the antiferromagnetic correlation length is defined by
comes so large thht

SU<T, (9)

1
1+ 02— iwélD

X0+ Qg )~ €2 , (15

112
: (16)

_ (USP
& &, (10) §=%| 50

where with the microscopic length scale set by
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-1 %x0(q,0) is the local momenh—2(n;n ) minus correction<C that
2x0(Qq) 992 . (17) come from the sum over nonzero Matsubara frequencies
0% <d X 4=Qq (quantum effects and from the terms neglected in the

The microscopic diffusion constabt is defined on the other Lorentzian approximation, namely, those coming from short

&=

hand by distances §— Q)*> ¢ 2. _
Contrary to the strong-coupling case, and contrary to
1 more usual approachésr? here is temperature dependent
D- 2 (18)  pecause boti{n;n,) and C are. Nevertheless, to find the
critical behavior analytically, it suffices to notice that this
where the microscopic relaxation time is dependence is regular. In fact, we have that whienTy,
R the double occupancy can be approximated by
1 9x0(Qq ) (19 (nn})=Ugp/U~Uyc/U when 5U—0.
T %Qd)  de |,y ) At the Neel temperatureTy the correlation length di-

) ) . ) . verges, =, so that Eq(22) determines the N& tempera-
This relaxation time is nonzero in both models B and Cyyre through

where the Fermi surface intersects the magnetic Brillouin

zone. . . —_ 2Ty ddq 1
In the presence of a large correlation lengtthe scaling T W ?

q~& 1 and w~ &2 justifies the neglect of higher-order sp0

terms in the expansion, EGLS). Comparing the approximate The wave vector integration is cut off at largeby the Bril-

(24)

form, Eq. (15), with the general scaling expression louin zone (~ w<q;< for any componeng;) so that the
R ey , only divergence occurs frog=0 in d<2 (g=0—qg=0Qyq
Xsf 0+ Qu, @)~ £77X(q8, &), (20 in the original integration variablgsSince the left-hand side
whereX(qé, wé?) is a scaling function, we immediately have Of this Eq.(24) is finite, this divergence prevents the exist-
the announced results ence of a finite-temperature antiferromagnetic phase transi-

tion in two dimensions or less.

v To find the correlation length exponent irk21<4, one
=2, =2 (21 rewrites EQ.(22) in the form

The Fisher scaling lawy=2— v/v shows that the anomalous - 2T diq &2 1

exponenty vanishes as in mean-field theory. In the follow- T=U p§2 (2m)9| 1+ q2&2 - az}

ing paragraphs, we compute the remaining exponemb SP=0

show that above four dimensions we do recover mean-field 2T dig [1

theory v=1/2 while for 2<d<4, we have then—o result + Tp&%f W ?} (25

v=1/(d—2).
Using the expression for the Betemperature, Eq24), this
2. Exponentw in 2<d<4 and equivalence last expression becomes
to spherical (r—«) model

The correlation length exponent is determined by solving  ~2 1_1 _ 2T o diaéd| 1 1
self-consistently Egs.(7) and (8) for the quantity uspgoz (2m)d '

Ty 1+¢282 o282
(nin;)=Ug/U. In general, we do this numerically using (26)

some technical tricks which are discussed below. With this

procedure, no arbitrariness is left in the cutoffs, which are>NCe the integral convergesgg— e for 2<d<4, it can be
entirely determined from the microscopic Hubbard modeléplaced by &-independent negative number and one finds

However, to study analytically the critical behavior, we no- Y2—d)
tice that there is a crossover temperafligghelow which the i~ ( l _ l)
presence of the small energy scald <T makes the zero- TN
Matsubara-frequency component in the sum rule, &g,
much larger than all the others. This is thenormalized-
classical regimaliscussed above. Its existence is a manifes-

tation of critical slowing downw~ ¢~2 ~ 58U near a phase p=— (28)
transition. Using the approximate Lorentzian form, ELp), d—2°

for theiw=igq,=0 component we rewrite E§7) as follows,
after a trivial shift of integration variables:

T )—v
—-1] 27

N

which gives

This exponent and/v =2, found in the previous section,
are the same as the one for the Berlin-Kac spherical mbddel

_ 2T ddq &2 or equivalently for the generalized Heisenberg model where
o= U p«séf 2m@ 17 g2 (22)  spins aren components vectors ant—. In three dimen-
S sions, this leads to

In this equation,
_ v=1 y=2, a=-1, B=3, n=0, ands=5.
o?=n—2(n;n)—C=1 (23 (29

N



14 240 ANNE-MARIE DARE, Y. M. VILK, AND A.-M. S. TREMBLAY 53

10000 |

T T TTT1T1T
I I T

1000

T F\II\Hl
Ll \IIH\l

100

T IlHll\l
| IIHIHl

10 ‘
400 600 800
(Umto)? /T3

B. Quantume-critical regime

When there is a critical value of the interaction at zero
temperaturenvhere one finds a paramagnet for<U . and an
antiferromagnet fotd >U_, then theT=0, U=U_ point of
the phase diagram is a quantum-critical péifithe vicinity
of this point in two dimensions has been studied again
recently? In order to study such a regime within the Hubbard
model at half-filling, one must introduce the next-nearest-
neighbor hopping sincé& .(T=0)=0 at this filling in the
nearest-neighbor model. One finds that the TPSC approach
has precisely then—c model A or model B quantum-
critical behavio? depending on the specific microscopic
model. In particularé scales as I/ as one approaches the
two-dimensional quantum-critical point from finite tempera-
ture. Again, in the TPSC approach the cutoffs are specified

FIG. 1. Semilogarithmic plot of the two-dimensional correlation without ambiguity. Model C, the perfect nesting case, is rel-
length, showing the scaling as a function of temperature in the casevant only to the renormalized-classical case, as we now

of nesting.

For comparison, numerical resditsor the 3D Heisenberg
(n=3) model giver~0.7 andy~1.4.

Above d=4, one recovers the mean-field results

y=2v and v=1/2. This last result follows from the fact
that in d>4, the integral in Eq(26) is dominated by the
large.  momentum cutoff so that for &1,
(1-TIT\)~ & 2fd%/qg*.

3. Two-dimensional case

We have already proved in the last subsection that the

discuss.

C. Peculiarities induced by perfect nesting
in the renormalized-classical regime, especially inl=2

The dispersion relation of the nearest-neighbor Hubbard
model on hypercubic lattices in arbitrary dimension satisfies
€k+Qy= ~ €k- Furthermore, at half-filing the particle-hole
symmetry implies that the Fermi surface is fully nested,
namely,ux=0, so that the equalityk+Qd— u=—(e—u) is
satisfied for all wave vectork. Slightly away from half-
filling, nesting in the formey., o, — u~—(e—n) is also a

transition temperature vanishes in two dimensions. The cof@0dapproximatiorat finite temperature as long &S, as

relation length may be fouridn the renormalized-classical
regime directly by performing the integral, E@22), in
d=2,

£=Ex(Ugpl SU) Y2~ A~ texp(m5?E5U g,/ T),  (30)
where A~ 7 is usually of the order of the size of the Bril-

louin zone, but not always as we discuss below.
In d=2, we callTy the temperature at whicbUis much

smaller than temperature and the magnetic correlation Iengtﬁ
& grows exponentially. While in higher dimensions a phas

transition occurs at finite temperature, d=2 the critical
regime with an exponentially increasing extends all the
way to zero temperature. For example, the temperdiyrs

plotted as a function of filling in the two-dimensional

nearest-neighbor Hubbard model for=2.5 in Fig. 1 of Ref.

7. In this referenceTy is called a quasicritical temperature.

discussed above. When there is perfect nesting, the zero tem-
perature critical interaction vanishe$) (=0). Hence the
fully nested Fermi surface, referred to as model C above,
does not have the simple quantum-critical point described in
the previous subsection.

When there is perfect nesting, the microscopic
interaction-independent quantitiég and 7y have a peculiar
temperature dependence. This occurs because they are de-
rivatives of the susceptibility which itself contains logarith-
ic singularities in the zero temperature limit. These quan-
ies are evaluated in two dimensions and in the quasi-two-

e, : . . : :
dimensional case in Appendix A. Dimensional arguments

that follow simply from this appendix show that dr>2
&~ U(TAnT Y, (31

To~1(TINT~1). (32

We stress that there is a range of fillings near half-fillingIn d=2, the InT* is replaced by IfT".®

where atTy it is the antiferromagnetic wave vector that

By contrast, in the case of second-neighbor hopping, nest-

grows, despite the fact that at zero temperature the phageg is lost and the above quantities are temperature indepen-

transition would be at an incommensurate wave vector.
The exponential growth of the two-dimensiorfatlearly

dent for a wide range of values of the second-neighbor hop-
ping constant. The above temperature dependences are then a

suggests that small 3D effects existing in real systems magpecial property of nesting. k> 2, however, the above tem-

stabilize long-range order &4-5, beforeT=0. We later

perature dependences are completely negligible in the critical

characterize the crossover driven by a small 3D hopping paregime since near the phase transition one can refilace

rametertj<t, from two-dimensional critical behavior to

the above expressions [y .

three-dimensional critical behavior. But before, we do so, we Th_e_ only issue then is in two dimensions where th_e phase
comment on the two-dimensional quantum-critical regimetransition occurs at zero temperature. Even neglecting loga-
and on peculiarities induced by nesting in the renormalizedrithms for the moment, one sees that sirgg scales as

classical regime.

1/T? over a wide temperature range, the correlation length in
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Eq. (30) scales as exp§tT°). By contrast, in strong cou- We restore the lattice spacing unitg along the three-

pling, or in the nonnesting case of the weak-coupling limit,dimensional axis and, in the planes. We assume, however,

the correlation length scales as eogi(T). that the ratioa;/a, is usually of order unity and numerical
The expcst(TéIn?T~1)] behavior is, however, largely an calculations are done fa/a, =1

unsolved problem. Indeed, in the critical regime in two di-

mensions, fluctuations remove the quasiparticle peak and reA. One-particle and two-particle crossover fromd=2 to d=3

place it by precursors of the antiferromagnetic bands, as

shown in Ref. 13. It is possible then that, in this regime, Ao

more self-consistent treatment would leadtfoindependent

of temperature, as in the strong-coupling case or th

nonnested weak-coupling case. It is also likely that there t<t,, (34)

will be an intermediate-temperature range where the ) . )

excst(T3In2T~1)] regime prevails, even if deep in the criti- 25 might occur in the high-temperature superconductor par-

cal regime self-consistency leads to eog#{(T) behavior. ent compound LgCuO,. In this case, we have that the

It is important to recall that in practical calculations in the tree-dimensional transition temperature to long-range order
TPSC approach, one obtains a numerical value for the corln 1S @lways less than the crossover temperaiyeo the
relation length without adjustable parameter. For example, irﬁ:haractqnstlc _exponennal behavior of the correlation length
Fig. 1 we present the temperature dependence of the corri! tWo dimensions:
lation length for the two-dimensional nearest-neighbor Hub- Tu<T (35)
bard model. As discussed in Appendix A, in this case N

We consider in this section the highly anisotropic situa-
n where hopping between plangs, is much smaller than
ein—plane hopping, ,

This is so because the microscopic in-plageand out-of-
£2=0.021U s t2a2/T? (33)  planeé), lengths satisfyey >&).
The crossover temperature to two-dimensional behavior
and Ugy=U ;. so that from the slope of the plot and from for itinerant antiferromaget always satisfies
Eq. (30) one findso?=0.21. From the plot we can also
extractA ~1=0.022 so that is known without an adjustable Tx<t,. (36)

parameter. Appendix B explains physically the orders 0fTwo limiting cases are then possible, depending on interac-

. ~2 71 . . . .
magr_ntude taken by~ and A _n this model. Similar cal- tion and on hopping parallel to the three-dimensional axis
culations can be done for arbitrary band structure. In strong:

coupling calculationd;® one obtainsé~ A~ texp(2mps/T) |

with pg a cutoff-dependent quantity that can be evaluated

only with Monte Carlo simulations. TN<Tx<t. (37)
Another consequence of the temperature behavidg af . . . .

Eq. (31) is thatabove T there is a range of temperatures for !n this case, when the transition to three-dimensional behav-

which the antiferromagnetic correlation length scaleséas ior occurs the three-dimensional Fermi surface is relevant
~¢,~1IT. This behavior should not be confused with Since the thermal de Broglie wavelength/ (= T)~ tjay /T

quantum-critical behavior, even though the power-law scallS larger th.an thg distance between _planes. In other words,
ing of the correlation length is the same. Indeed, one fingdhe three-dimensional band structure is relevant to the behav-
that the argument of the exponential in E80) is larger than ~ 1©F of smgle-parnclepropggators in Matsub_ara frequencies
unity in the corresponding regime while in the quantum-before t_he phase transition occurs. Fermlo_ns are quantum
critical regime the argument of the exponential should bemechanically coherent over more than a single plane and
much less than uni§In fact the temperature dependence of "€Sting generally plays a role in the value of the ordering

the staggered susceptibility far>Ty is also different from Wave vector. The crossover from two- to three-dimensional
the quantum-critical result. critical behavior would occur in a manner analogous to the

anisotropic Heisenberg model;??
(b) Intermediate coupling or very large anisotropy

‘ .
(a) Weak coupling or small anisotropy limit

IV. QUASI-TWO-DIMENSIONAL SYSTEMS:
RENORMALIZED-CLASSICAL CROSSOVER t<Tn<Tx. (38)

FROM d=2 TO d=3 . . .
Here, long-range order is established before the single-

The general discussion of universality in the particle coherence occurs between planes. A phase transition
renormalized-classical crossover fralw2 tod=3 appears occurs only because ofvo-particle (or particle-hole coher-
in Appendixes C and D. In the present section, we firstent hopping. When the phase transition occurs, thermal fluc-
clarify the various regimes of crossover, according totuations are still large enough that coherent single-particle
whether or not single-particle coherence in the third dimenband motion in the parallel direction has not occured yet.
sion is established before the phase transition. Then, we gbhere are several ways of explaining physically what this
on to discuss the case<Ty<Tx where the SDW instability last statement means. For example, it is clear that when
occurs before interplane single-particle coherence i§ estalyy<T, features of the band structure in the parallel direction
lished. More specifically, we find the scaling of theedlle are irrelevant for single-particle properties since the first
temperature witht, /t; as well as the size of the three- Matsubara frequency is larger than the bandwidth in that
dimensional critical regime with the corresponding expo-direction. The motiorbetweenplanes is still in that sense
nents, showing that the results are those ofrthe limit. guasiclassical when the phase transition occurs. Another way
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of saying what this means is that the thermally induced un-

certainty in the parallel wave vector is equal to the extent of 025 ‘
the Brillouin zone in that direction, corresponding, via the 020 4
uncertainty principle, to a confinement within each plane. ///
We do not discuss the intermediate case<t;<Tx but 0151 i
concentrate instead on the very-large-anisotropy— T/t
intermediate-coupling limit just introduced. 0.10 | .
B. Numerical solutions 0.05 | .
The scaling behaviors of the Betemperaturd’y and of 0.00 ‘
the three-dimensional crossover temperature are derived in 0.00 0.05 0.10
the following two sections. We first present the numerical G/t
results obtained from the solution of the self-consistency re-
lations, Eqs(7) and(8). The numerical integration in Eq7) FIG. 2. Neel temperature as a function gf=t; for U=4t, , at
is made possible by rewriting this equation in the form half-filling.
d3q I
2 .
n_2<nTnl>:TaﬂaJ_f(27T)§E [Xsp(qun) _ENQA,M_ (45)
1dn o & ta
_ng(qyo)(;n o]+T®\aff quxgg(q,o)_ We present numerical results for the nearest-neighbor
’ (27) Hubbard model in units wherej=a, =1 andt, =1. The

(39)  value of Ty(t)) appears in Figs. 2 and 3 faf=4. In Fig. 2,
we clearly see thafy becomes almost equal #~0.2 for

The sum over large Matsubara frequencies can be approxm still quite small. The scaling oF y(t;) shown in Fig. 3 is

m?;edf.byt?“t'”te?fa' Ina controlltlad .{Tlannfetrr.] Thet SUbtrgcuoq%xplained in the following subsection. Figure 4 shows the
In the first integral removes singularities of the intégrand ang, 5 jaiinn of the in-plane correlation length as a function

makes the integral well behaved. Since the transition occurg; temperature for various , again forU=4. For the purely
n ths .smgle-parélcleklnco_he_rednt reg(;me, E(gB), thhe 'thel' two-dimensional caset =0, one can observe for
grand in square brackets is independenjoébove the Ne T<Tx=0.2 the exponential behavior mentioned in the pre-

e o gEdig seclon. AL a lemperaure about 0.1, e in-lne
bility correlation length¢, is already as much as i@in units
’ where lattice space is unityFor 10 3<t<10%, & di-

2 1 verges at the Nl temperature located in the narrow range
=350 15 22+ 22 (40 0.16<Ty=<0.2. Forty #0, it is also clear that the crossover
§aj+état to three-dimensional behavior occurs in an extremely narrow
where temperature range. This is explained below. Note that the last

few curves on the right-hand side are at the limit of validity
£ =£&(Ugyl8U), (41)  of our approximations.
We note that fold =4t, we find that afT =T the local
g=Eh(Ugpl 8U) Y2 (42 moment is equal to three-quarters of the full moment in
the atomic limit, i.e.,n—2(n;)(n,)g;,(0)=0.75, g;,(0)

X239+Qs,0)

To have sufficient precision for large two-dimensional cor-
relation lengths, it is important to evaluate analyticadly,

§|(|), as well as the integral of E¢40) appearing in the con-
sistency equatioif39). This is done respectively in Appen-
dixes A and C. To perform the second derivatives in the
definition of &, ‘(‘), we expandyo(Qs) in powers oft /T,
keeping only the first nonzero term: Thgg does not differ
from the one already presented in Eg§3). It is shown in
Appendix A that over a wide range of temperatures we have N

6.00 - .

Pxo(Qs) [t '
— 7 ~al| = O/ (43 500 i
e ]
and ‘
1 0.02 0.04 0.06
92 2 2
Xo(2Qs) ~a? % FOUHIT?)). (44 -Int, T, )
aqj ]
The interplane hoppingy in Egs. (39) and (40) occurs ex- FIG. 3. 1Ty as a function of T&/UZ)|In(t,/t)| for U=4t, at

plicitly only in gﬂ, and the above results imply that half-filling. The quantitiesT andt, =t; are in units oft, =t.
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[\ 2 2
2000 _ 0\~ tjay |~
§2d2<TN>=(T) R2x %) A2 (49)
0 1 Al
£ Comparing with the general theory of Appendix D where it
is argued that;""(Ty)~tf, we see thatp/v=2. In other
1000 words, ¢/ v=y/v=2 and the crossover expon&hi is here
equal toy as is usually the case in the— model?® We
obtain, using expressio(B80) for the correlation length in
two dimensions,
0 1 a’ t, }
0.16 —=——"—|In—+c|, (50)
TN 7U &)%Y

wherec is a nonuniversal constant of order unity.

In the special case of perfect nestititalf-filled nearest-
neighbor hopping modglthe microscopic lengtly is tem-
perature dependent, as shown in Appendix A,

FIG. 4. In-plane correlation length, (lattice spacing is unity
for several values of out-of-plane hopping parameter at half filling
for U=4t, . T andt, =t are in units oft, .

=<nTnl>/(nT><nll). This number is only weakly dependent 0.085 1
on temperature in the range studied. (65)°~al — s———. (51)
T° 2x(Q2)
C. Dependence of the Nel temperature Ty on t;: Using this result as well asUq;.=2/x(Qz)~Us, at
Crossover exponent Tx~Ty gives the scaling illustrated in Fig. 3 for the case
From the discussion of the previous section, E@S), a, /ay=1, namely,
(40), and (22), we know that the singular part of the self- 2
. - . - . 1 TN 1]
consistency condition may be written in the following form —~——|In—. (52)
in the quasi-two-dimensional case: T U U
2Taa2 d%q 1 The logarithmic behavior in E450) is typical of systems
o= aﬂjz 3> TERvwE (46) that undergo a dimensional crossover from their lower criti-
Usd&0)°) (2m)° ai+ & “+(&'167)%q cal dimension. For example, the analog of E49) in the

The integral can be done exactly, as in Appendix C, and aIT”mISOtrOpIC Heisenberg case would rEad

the results obtained in this subsection and the following one I\~

can be obtained from limiting cases of this general analytical fgdz(TN)~ (J—) A2, (53
result, as shown in Appendix D. Here we make approxima- L

tions directly on the integrals since this makes the physics ofading td° Tglwm(‘]” 13,). The above results, Eqgt9) and
the results more transparent. Although arbitrary cutoffs ap¢(53), are suggested by the simple RPA-like form

pear in_ the analytit_:al expressions,_ we reemphasize that in trb@?.d'\’)(zd/(l_‘]\\XZd) with Jjx2q~1 at the transition and
numerical calculations of the previous section the cutoffs arg,, .~ £/~ £2 —exp(, cstT). As in the previous section,

simply given by the Brillouin zone and there is no arbitrary ¢, quantity U

scale in the results._2 change constanty, | . In the perfect nesting case, these ef-
At Ty, we haveg, HZOL Furthermore, from Eq#41) and  fgctive exchange constants would be temperature dependent
(42) we find £/¢, =£o/€p so that the above integral, EQ. sinceU (52 ~Ugft, )2/ T2 Note that in the crossover
46), takes the f S ansional Tt e T ;
(46), takes the form from one-dimensional Luttinger liquid behavior to three-
dimensional long-range order, the effective exchange con-
f dg 1 stantJ, also scale€"**asut®/T?, with u a running coupling
2 qf+(§0/§$)2qf constant. The one-dimensional Fermi surface is nested.

«(é6)? plays a role analogous to the ex-

_2Tyapat [ d%q,
T Ugf£)%) (2m)?

~2

(47)
Using the mean-value theorem for the integral oggmwe D. Size of the three-dimensional critical region
have The singular temperature dependence of the correlation
length is obtained from the equation
~ 2TNaf dzqi 1
UZZU 02 | (272 | (48 ~2_2Taﬂaf d3q 1
sd €0) ™ 2 0| =2 o= 3 7 2 ;2. 2" (54)
0

- _ . Since the ratio§H/§L=§ﬂ)/§$ is temperature independent, a
where A is a constant that we need not specify. It is con-simple change of integration variables shows that rigar
tained in the range €@ |K|<w/a||. The above integral is the the scaling of both correlation lengths with temperature is
same as the one that determines the correlation length in twidentical to the isotropic three-dimensional case. In other
dimensions, Eq(22); hence affy we have that words, the critical behavior near the phase transition is that
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of the three-dimensional system. However, as one increasgerfect nesting where the two-dimensional renormalized-
the temperature away froffiy, the correlation lengths can classical correlation length diverges as [eg#(T°In?T)] in-
decrease untif;<a while at the same timé, >a, . When  stead of expgstT) .

§/<q, the integral, Eq(54), is essentially two dimensional We have applied the method to a detailed study of the
and for¢, >a, one should observe the characteristic expo+enormalized-classical crossover from two to three dimen-
nential temperature dependence of the two-dimensional cosions where we have highlighted the existence of a regime

relation length. where the three-dimensional” dleinstability occurs before
As usual, the definition of crossover contains some arbithermal fluctuations become small enough to allow coherent
trariness, and so let us choose single-particle band motion between planes. In this regime,
the single-particle spectral weight could exhibit the two-
§(T")=a (55  dimensional precursors of antiferromagnetic bahdbove

the three-dimensional ¢ temperature.

The TPSC approach can be applied to study realistic
cases. For LgCuO, we will show in a subsequent publica-
tion that with second-neighbor hopping one can fit experi-
ments on the magnetic structure factor.

The generalization of the TPSC approach beyond leading
order in 1h is left open. Also, the effect of self-energy
feedback® on exgcst(T%In?T)] behavior of the correlation
. (56) length in the two-dimensional nesting case should be cleared
in further studies. Finally, the universd=2 to d=3 cross-
over discussed in Appendix D should be investigated beyond
leading order in M.

as the definition of the crossover temperatiife between
d=2 andd=3 critical behavior. In that regime, the correla-
tion length, Eq.(55), scales with temperature as in the
d=2 regime, Eq.30), except that, as argued befoi, is
smaller by a factor g}/ £5) = (tjap/(t,a,); hence we obtain
for T*

1 a2

=——|In
T 752U o &)2

—|+c’
L

wherec’ is a nonuniversal constant of order unity. The size
of the crossover region is thus
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The above results, Eq&5) — (57), are as expected from the
usual theory of critical phenomena exposed in Appendix D
In particular, the scaling of* with t;/t, is the same as that
of Ty. The smallness of the crossover region frdm2 to
d=3 critical behavior in Fig. 4 follows from the above con-
siderations. The smaller 1By, the smaller isT*. The above L
situation should be contrasted with the problem of crossoverAPPENDIX Az £57 AND 74 IN THE CASE OF NESTING

from d=3 to d=2 in helium films, studied by Fisher and | this appendix we derive expressions for the out-of-
Barber: _Ir_1 that case, power-law sc_allng occurred ?Very'planeg‘(‘) and in-planess microscopic lengths,

where, giving quite different expressions for the scaling of

T andTy. s i ” o 1 #x0(9,0) AL
Given £(T*) = &y(T*)[Usp/ 0U(T*)]¥2 and &y~ , the 3 “2%0(Qa) gt o, (A1)

above relatiorg(T*) =a; means thaU(T*) should scale
astf. Similarly we should havesU(Ty)~tf. We checked as well as for the microscopic relaxation timgin Eq. (19),
numerically® that the scaling with holds fort;<0.05 in the

half-filled nearest-neighbor model with=4t . 1 (9X§(Qd,w)

7 %(Qa)  diw

for the quasi-two-dimensional antiferromagneQ,
We have shown that the TPSC approach allows one te- (4 7, 7), inthe regimet;<Ty<Ty of Eq.(38). We also

Study all aSpeCtS of nearly antiferromagnetic itinerant eleCassume tha,u<T (o) that the maximum Of the Static Suscep_
trons in one-band Hubbard models. The method is in quangpility is at Q, even away from half-filling.

titative agreement with Monte Carlo simulations in the non-  \we start from the retarded Lindhard functiondrdimen-
critical regimé*® while in the critical regime(renormalized- sions,

classical or quantum-criticathe relatively weak temperature

dependence of the local moment leads to the same critical 5 ddk flexrq—m)—flex—p)
behavior as strong-coupling models to leading order in the Xo0(Q,0)=2aa7 (2m)¢ )
1/n expansion, namely, in the— o limit. There is no arbi- Bz (A3)
trary cutoff so that all results can be obtained as a function of

lattice spacing, hopping integral, and interaction parametemvheref is the Fermi function ange the chemical potential
Fermi surface effects are apparent, in particular in the case ¢fu=0 at half-filling for our Hamiltonian but the expressions

: (A2)
w=0

V. CONCLUSION

w+i n— Ek+q+ €y
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quoted here are more general than for the half-filled )casewhere
For nearest-neighbor hopping, we have the nesting property

flexsq— 1) —flex—n)

€k+Qq~ ~ €k» (A4) Cl€xtq.€0)= ppp——
q

which can be used to rewrite

Assumingt|/T<1, we evaluate second derivatives to the
R 1-f(E+p)—f(E—p) lowest nonzero term in powers qf/T Forg;=q, the lead-
Xo(Qd:w):zf dENy(E) wtint2E - ing term in Eq.(A8) gives atf contribution if we keep
(A5)  t=0 in the integrand. The second term gives also to leading
order a quadratic contribution . The spread of the Fermi
factors over an energy interval of ord@rallows us to ne-
glect all other dependencestipand to perform the integral
in the third direction trivially, enabling us to rewrite the re-
maining integral in terms of the two-dimensional single-spin

1-2f(E) density of stated\,(E). After some algebra we get
Xo(Q=X3(Q3.0=2 f dEN(E) o, (a6) y 2(E) g g

whereNy(E) is the single-spin density of states for the given
dimension.
In the limit «<T we have for the static susceptibility

so that in two dimensiongo(Q,)~In%(t/T) while in three *x0(Qa) 4t f'(E+u)+f (E—pu)
dimensionsyo(Qs)~In(/T). In the quasi two-dimensional Tl —2t”a”J’ dENz(E){ =)
case witht<T the two-dimensional value of, is an accu- I
rate approximation. The numerical values@f(Qg) are in 1-f(E+p)—f(E—p) f 3
practice easy to obtain from numerical integrations. + E3 ]+O (f) '
For the microscopic relaxation time when<T we start
from (A9)
w wheref’ is the derivative of the Fermi function. Using the
IMx§(Qq,w)=7Ng| = 5 tam—(4_|_) (A7)  expansion of Fermi functions and derivatives n&arO0, it

can be shown that the integrand in the preceding equation is

In two dimensions, the logarithmic divergence of the densityfinite at finite temperature. Indeed B$T—0, it behaves as

of statesNy4(w/2) at the van Hove singularity makes the zeroNy(E)f"'(u), wheref”’ is the third derivative of the Fermi

frequency limit of the microscopic relaxation time ill de- function. At low-temperature, approximating the integrand

fined. Nevertheless, van Hove singularities are usuallypy Ny(E)f"'(u) over an energy interval shows immedi-

washed out by lifetime effects in more self-consistent treatately that

ments so that one expects that fas<<T one has

axg(Qd,w)/dw|w=o~ 1/T, leading to the temperature scal- 5 )

ing of 7o~ (TINT Y)Y in d>2 described in the text. 9“x0(Qs3) ~a2ti (A10)
We move on to evaluate analytically the wave vector de- aqf T2

rivatives in the regime<Ty<Ty. Keeping for a while a

general notation wherieis some directionX, y, orz), one  More precisely, If? should be multiplied by a logarithmic

can write correction that comes from thel2density of states. Numeri-
cal integration of(A9) shows that thi$ﬁ(1/T 2) behavior oc-
#*Xo , o[ d%k °C curs on a wider range of temperature than first expected:
Era —8tia; f S(2m)3 Fsmz(k +a) T=0.2 is already in this regime.
i k+q

We can evaluate the in-plarg=q, derivative in the
same spirit. This time tak =0 from the start since the
Ieadmg order is |nt [T > tﬁ/T2 We thus have
#x0(Qs)/99° ~&2X0(Q2)/aql After tedious algebra we

(A8) finally get

Y L
ta; (277)386+c05( ai),

xo(Qg)_t2 2f JEN(E [ FE+ @)+ (E— )]+ —f(E+,L;)E—f(E—,LL)

“ 1 fE+p)+f (E—p) 1—F(E+u)—f(E—
—tiaﬁfo dEM(E)(E[f”(E+,u)+f”(E—,u)]— ( “E2 (E-p) 1-1( ME)3 E-w]|

(A11)



14 246 ANNE-MARIE DARE, Y. M. VILK, AND A.-M. S. TREMBLAY 53

where the integral 10 —
N
ME—Fd 4'rFfd2k5E 50—k 0
(B)= . Qx4 SIMQy (271_)2 ( €) 6(dx—ky) 1)

(A12 A0F L/ e
can be interpreted as an average over the surface of constant Iy
energyE of the square of the Fermi velocity in thedirec- 20 ‘ ‘ ‘
tion times the density of states at this energy. It can be evalu- 00 01 02 03 04
ated analytically as T

FIG. 5. Second in-plane derivative of the noninteracting suscep-

2 E E tibility 1(n,T)=3d’x0(0,0)/9%q, |q in two dimensions as a function
M(E)= ?( 2E(k2) - Z( 1+ Z) F(kz) of temperature for various band fillings
a given filling depends on the interactidsh because by
E? 212 changingU one can change the ratjo/ Ty and because the
+EH(“ K 1 (A13) nature of the final three-dimensional order depends very

much at which wave vector correlations start to grow below
HereF(k?), E(k?) andII(«?k?) are complete elliptic inte- Tx.’
grals of respectively first, second, and third kinds, with ~Calculations presented along the above lines do not allow
k?2=1— E2/(16tf), anda?=1—E/(4t,). Again atE/T=0 us to study the case where the maximum occurs at an incom-
the integrand in Eq(A11) is well defined, and using Fermi Mmensurate vector since we need the analytical expressions
function expansion it can be shown that at low-temperaturéor the second derivatives of, to perform very accurate
*x0(Q)/99? scales am?t?/T?, with this timeno logarith- numerical calculationgWhen the wave vectay is dlf_fere_m
mic prefactor as before. More precisely we found numerifrom (m,7) we do not have anymore the useful simplifica-
cally for a wide range of temperatufeider than the range tiOn: €x.q= — €k, allowing us to replace the( ,k,) integra-

studied in the main texthe behavior tion in Eq. (A8) by a simpler integral on the 2D density of
states| Progress is nevertheless possible numerically within
) 5 the TPSC approach.
1% t
M:_o_()gaZ_l (A14) B
2 ai TZ _1
aq; APPENDIX B: ESTIMATES FOR ¢ AND A
and, correspondingly IN THE NEAREST-NEIGHBOR MODEL

In this appendix we provide estimates fef andA ~* in

1 3%v(9,0) U £2 the isotropic two-dimensional nearest-neighbor model. The
Ly2— Xl ~0.0852 ¢ L surprisingly low numerical valueg?=0.21, A ~1=0.022
(50) 2 2 L7 4 ?2 . . .
xo(Qa) 997 lq=q, obtained forU=4 in the text are special to the model C

perfect nesting case.
From Egs.(A10) and (A14) and a numerical evaluation of ~ Wwe first rearrange the self-consistency equation(Bgto
the corresponding quantities, one finds the scaling isolate the asymptotic behavior, as we did in E89) but
here in two dimensions and with, =1:

]
S0 b3y
56 t,a

(A15) 2 02

d a as,
n—2<nTnl>=Tf (ZT)ZXSp(q,O)—’_Tf W
To conclude this appendix let us stress the fact that ex-
pandingxo(g—Q,) to the second order using EA11) to
obtain the asymptotic form of the 2D spin susceptibility is
valid as long as the maximum of, is at (7, 7), which is XE [Xs69:i9n) — X550, 0) 8 0]
more general than half-filling. Indeed, by symmetry, the first "n
derivative of the free susceptibility &, is zero for all fill-

ingsn and temperature, and, as discussed béfotet finite . . .
temperature and away from half-filling the absolute maxi—lt is usually assumed that the last integral on the right-hand

mum of the free susceptibility can be at @) even if it is side is weakly temperature dependent and it is included with

not the case af=0. This behavior can be observed in Fig. 5 the left-hand side to define? . This procedure usually suf-
where the in-plane second derivative is plotted as a functioffces for reasons we will see below. For a more accurate
of temperature for various values of band filling. When theestimate ofo? close toTy we use the Euler-Maclaurin for-
second derivative goes to zero there is a shift in the wavenula to approximate the sum over Matsubara frequencies
vector, maximizing the free susceptibility. Whether the magarger than the zeroth one by an integral. Recalling also that
netic transition will be commensurate or incommensurate aksy(d.idn) = xs{d, —iq,) we have

(B1)
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d*q as, ~ 27T | Xsd Gtyps 0) + Xspf Otyp 277 T)
n—2<nTnl>—Tf (ZT)ZXsp(qyO) 0?=2 5 5 =0.19, (B8
d?q a whose numerical value follows from results obtained for
T e txst 8.0 =X a.0)] U=4, Ty=0.2, Ug=Up =2,

d2q i S| ,0 ’10.60,
+TJ WXSp(quql) Xsd dyp: 0)
)N d2q ) Xsp(qtypazﬂ'Tx)zo.Sﬁ. (Bg)
+2L f(zT)zxsp(q,m). (B2)

ST21 The estimated numerical value @f in Eq. (B8) corresponds

closely to the value obtained in the text from accurate nu-
To recast this result in the same form as the consistencyherical solutions. The fact that? scales roughly as
condition, Eq.(22), we first note that a more satisfactory T,~T . in very weak coupling, as follows from E¢BS8),

definition of o than the one given in Eq23) would be is a significant result since? is also related to the size of the
pseudogap between precursors of antiferromagnetic bands,
d’q . as shown in Ref. 13.
ﬂﬂf (Zw)ZXSP(q"M' (B3) To estimate the value of %, we notice that in the usual
consistency condition, E¢22), one keeps only the first term
Also, the coefficient of the term linear in temperature on theon the right-hand side of the more accurate expression, Eq.
right-hand side of Eq(22) would not only include the as- (B4). The effect of the other terms is mimicked by using an
ymptotic Lorentzian form but also a correction from the de-effective cutoffA that is not equal to the Brillouin zone size,
viation to Lorentzian and another correction from the firstas one might have naively expected. In other words, the ef-
Matsubara frequency. Overall, then, a more accurate exprefective cutoff A may be obtained by requiring that
sion for the consistency condition is given by the last defi-

?zn—Z(nTnl)—zfx dn
2

nition of o2 and Aqdg mqdq . d?q
" 0 EXS;S)(CLO): fO EXSp(q!O)—’_j (277)2
~ d’q d*q .
"2:TU (277)?X55(q’0)+J 22l Xsd 4.0~ X510, 0)] X[ xs49,0)— X33 ,0)]
d? d?q _
+J’ﬁgxsp(q,iql) . (B4) +fWXsp(qv|Q1)- (B10)

The rest of this appendix is in two parts. We first estimate thé/Vhen there is no nesting, the quantily is relatively small

left-hand side of this equation? , and then we estimate the at the crossover temperature, meaning that the asymptot_ic
integrals on the right-hand sid’e’to obtain * Lorentzian form is not so peaked and should be a good esti-

=2 i ) mate of the susceptibility over much of the Brillouin zone.
To obtaing®, one should first notice thqt at the CrOSSOVelBacause of the slow decay of the asymptotic form
temperature the local moment-2(n;n ) is already quite ¥2Yq,0), thesecond integral should in fact be negative and
close to 'tﬁ zero temperature value. Taking this as an estiy 14 partly cancel the last integral so that we should have
mate, we have A~ . By contrast, for perfect nesting,~ 1/T is large, as
2 seen in Appendix A, meaning that in this case the asymptotic
»d\ [ d“q . a . : .
n_2<n7nl>:2f _f ——XxsddiN),  (BS) form x5Xa,0) is valid only in a narrow range df values.

0 2m) (2m) Over most of the Brillouin zone, away from the maximum,
the true susceptibilitys(q,0) is larger than the asymptotic
one ng)(q,O) because the latter decays rapidly away from the
5 maximum while the true one has an extremum at both the
~ 27TdN d<q ) A
= —— Xsf QhiN). (B6)  Brillouin zone corner and center. The same arguments as

—_ 5 r.
o 2m) (2m) those used to evaluate integrals ter allow us then to esti-

so that, substituting back into E(B3), we have

To estimate this integral for the case of perfect nesting, wénate
note that singularities of¢(q,0) near wave vectorg=0

. . " d2q
and q=(,7) are integrable singularities. We thus use the J' 0)— v q.0) 1= 0)=0.60
mean-value theorem to write, in our dimensionless units, (ZW)Z[XSp(q' )= X5 9 0)1= X5 Gy 0) (’ )
B11

d’q

(2m) | i) =xsd Gop 27T, =0.36, (812
As a representative point, one can tajg=(,0) since it is
far from both singularities. Using the trapezoidal rule to es-so that the equation, EqB10), that determines the cutoff
timate the frequency integral, one has becomes, withJg=2 and&3(Ty) =1,
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Aqdq , _qudq 2 1 _(T—TC(O)
| ema0= | Tz e o)

with ¢ the crossover exponent afid(0) the value of the
U pfz transition temperature at zero anisotrapy 0. It is clearly

Alzwlexp( - —300.96) ~0.016. (B14) the _Iarge value Qf the correlation length -that validates the
2 scaling hypothesis. The scale fact&r&ndB in Eq.(D1) are

Although the difference with the numerically accurate result"@nuniversal, but the scaling function is. The valuehdfor
seems relatively large, one should really compare the est® diven model is fixed by the normalization condition
mates of I\ L. The above estimate, In0.026- 4.1, differs ~ X(0)=1.

only by roughly 10% from the estimate, In0.022- 3.8, ob- Near the true transition temperature at the anisotropic
tained from a logarithmic plot of the numerically accurate fixéd point, the susceptibility should obey the usual result

solution. x(g,t)~A(g)t ™, (D3)

APPENDIX C: EXACT RESULT FOR [D*Qx3; where quantities with a dot refer to properties of the aniso-

part of the spin susceptibility neaQ;=(m,7, 7). Let .

X ad 0+ Q53,0) be the approximate spin susceptibility near t(T,g)=< T.(0) T.(0) =t+1tc(9).

Qs obtained in Eq.(40) with _qf:q§+ q; andqy=d, First ¢ ¢ (D4)
we integrate in thez direction from —A to Ay, with
A=m/ay, then change to polar coordinates in the plane, an
integrate on a circle of radius, to finally obtain

: (D2)

dhe two expressions for the susceptibility, E¢B1) and
(D3), are consistent only if the crossover scaling function
X(Bg/t?) is singular as a function of its argument, namely,

d’q .
——x3g+Q3,0 X\
fD(szXSP(q Qs lim X(x)=x0<1—x—) , (D5)
X—X¢ c
1 1 . . . L
= | — arctan\ ¢ where X, is a universal amplitude while; is a g- and
7Usd&o)%ay| A t-independent universal number. The definition
= ¢
tiE 1+A%¢7 arctan—AHg”2 > x=Bo/lt(9)] (08)
1€ VI+ATE then immediately implies that the transition temperature is at
oL 1 AE H e 1(9) = (Bg/xo) . ©7)
2 +AZE ]|
! A” d The generalization to thd=2 to d=3 crossover is not

This analytical result provides another route to obtain thecompletely trivial because id=2 the correlation length is

Néel temperature and thé=2 to d=3 crossover as dis- Not a power law of temperature faD(n) models with
cussed in the following Appendix. n>1. Fisher and Barbétin their study of crossover in he-

lium films have considered the case where the system is three
APPENDIX D: EXTENDED SCALING HYPOTHESIS dimensional at high_temperatur_e an_d two dimen_sional at low
AND UNIVERSALITY FOR THE temperature, opposite to the situation we c.on5|der. _Further-
RENORMALIZED-CLASSICAL d=2 TO d=3 CROSSOVER ~ More, the transition temperature is finite éh=2 hehgm
films. Kosterlitz and Santé$did consider the case of inter-
We first briefly recall the results of Ref. 27 on universality est here, both within a one-loop renormalization group ap-
of crossover scaling functions in anisotropic systems. Theroach and in the spherical model. To cast the results of the
discussion usually centers on anisotropy in spin space rathégtter paper in the language of the extended scaling hypoth-
than position space but the results are generally applicablesis, it suffices to recall the usual hypothesis that the diver-
Suppose one has a very small anisotrgpySufficiently far  gence of the correlation length in the plane is at the origin of
from the transition, the critical behavior will be that of the the scaling behavior. Hencg(T) ~” can be replaced every-
isotropic fixed point and should be described byékeended where in the above equations by a function of absolute tem-
scaling hypothesigor the singular part of the free energy perature that scales witli in the same way as the two-
density. The same extended scaling hypothesis follows fodimensional correlation lengt,
other thermodynamic response functions. We use the symbol
~ to mean “asymptotically equal to” and~ to mean &24(T)=Texp(C/T). (D8)

_scales as.” Let us concentrate on the magnetic Sl"SCE’pt'b'll'n this expression, we have allowed for a possible algebraic

ity preexponential factor. For example, to one-loop order
- the momentum-shell meth&tithe preexponential factor is
H~At YX(Bg/t?), D1 ~ : ,
x(g.H (BYLY) (B1) a=(n—2)"1, while to two-loop ordet’ as well as in the
where n—oo limit, only the exponential is presers,=0. In addi-
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tion to the nonuniversal quantities and B defined above, to expand Eq(C1) and write
we now have an additional nonuniversal constanin Eq.

(D8). This is not fundamentally different from the usual case 77Uy &5)%0? 1 1

where the relation betweenand absolute temperature also Tﬂna +In Zr7) t1-garctanu).
involves a nonuniversal constant, namely(0). Theonly + (D16)
difference between the itinerant case and the usuadctor

model is thatC can be temperature dependent in the case off one solves the above implicit equation far, then the
nesting, as discussed in the text and in Appendix A. Whersusceptibility, Eq.(D11), follows immediately fromu? in
there is no nesting symmetrg, is temperature independent. Eq. (D14) since
In the strong-coupling limit, one usually defin€s=2mpsg.

2 12

2
With the above(T) ™ "— &,4(T) hypothesis, the extended R _ u
scaling hypothesis becomes Xef Qa0) Aﬁ(fo)zusp' (b17)
Xst(deo)%Aggéyx(ng(ZbéV)v (D9) goft_e tge:)tu is a function of the dimensionless quantity
) efined by
whereg=(t; /t,)? plays the role of the anisotropy parameter
in the case we have considered in detail in the text. The X= af%dzaexp(ZC/T)zaAfgf, (D18
function X(x) is a universal function that we normalize to
X(0)=1. With precisely the same asymptotic form as in Eq. U p(gL)Z’(;,Z
(D5), simple power-series expansion in powersTof Ty CE%, (D19
allows one to recover the correct critical behavior near the a

three-dlm_enspnal et temperaturze. l/—:ence, the gletem- as may be seen by exponentiating the implicit equation
perature is given byx.=B(t;/t,)°¢5" so that with the (D16)

n—oo result ¢/v=7y/v=2 and Eq.(D8) one recovers the

result of the main text, u2 2
c ()2 =\ 152 ex;{z—aarctam . (D20)
—~In(—) , (D10
Ty Ll Before explicitly solving this equation in limiting cases,

with C taking its appropriate temperature-dependent value it US express the universal scaling functXnin terms of
the nesting case. u. The last equation for the susceptibility, E§.17), may be

We conclude by an explicit calculation of the universal "eWritten with the above definitions as
crossover function for the staggered susceptibility in the

ve! . ne 202(x) 2¢7
n— limit. In this casea=0 in Eq.(D8). The general form R 0)= — A2 X(x) = Ly
of the susceptibility is given by Eq.(15 with Xeif Qa:0) al?(£5)%Usgp £2aX(x) (£5)%U ¢ 0,
&= £5(U &/ 8U): (D21)
2 where
4 Qu,0)= = (D1D)
X 000~ 55 W)

. . . X(x)= (D22)
The value ofSU is in turn obtained by solving the self- X
consistency condition, Eq39), and

A=T azfﬂ 3q,0) (D12) 2
=Tagal | 5 53xefa.0). (D23)

A= ——5—.
AT(&)%Ugp

where o2 takes essentially itel=2 value with very small ) ) ) o
corrections. We can use the result of the previous appendix, 1h€ universal crossover functiof(x) is plotted in Fig. 6.
Eq. (C1), for the integral. It is then convenient to rewrite the L€t us check various limiting forms analytically. This will
result of the integral in terms of the following dimensionlessallow us to recover all the cases studied in the main body of

variables: the paper. First, the two-dimensional limit is the one where
u—0. In this limit, the implicit equationD20) reduces to
Aﬁfﬁ Aﬁ(gltl))Z t 2 x=u?. This verifies that we have the proper normalization
A= -5 7= "7, 2=CS‘(—) , (D13)  X(0)=1. The three-dimensional limit is the limit where
Alel AL b U0, In this limit,
u=A g =Ajép(Ugl/ 8U) 2 (D14) Xo=€2. (D24)

Since we assume that we are in the scaling regime, “amelkeeping the next term in the d/expansion, we have
the one where the two-dimensional correlation length is very

large, (\%£%)>1, we can use 2 x| 2
lim X(x)= (— (1— —) ; (D25)
a<u? (D15) X=X € Xe
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FIG. 6. Plot of the universal crossover function frais=2 to
d=3 for the staggered susceptibility in time-oo limit as defined
by Egs.(D22) and(D20).

hence the universal constaXiy takes the value#/e)? . As
expected the susceptibility exponentds=3 is y=2. The
Neel temperature follows from

X.= aexp(2C/Ty) (D26)
or
C eAJ.fJ.) (ti)
—= ~In| =|. 2
T Ajg " il (©27
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We could takeA § to be equal to any other finite number.
For definiteness however, we continue wikhé = 1. Substi-
tuting in Eq. (D20) we havex* = 3exp(2—=/2); hence the
crossover temperatufg is given by

X* = aexp2C/T*). (D28)

Comparing with the equation for the Bletemperature, Eq.
(D26), we find that the scaling of ex@(T*) with the anisot-
ropy parameterr is the same as that of ex@(T). More
specifically, we find, in agreement with the main text, Eq.
(57), that the size of the crossover region is given by

) :Iog§2d(TN)(xC/x*).

-
T T Inéxg(Tyy
(D29)

In other words, the size of the crossover region, calculated in
reduced temperature, decreases With

To complete the relation with the general functional form,
Eqg. (D9), postulated above, note that if

i

thenx=Bgés’ = a3, with ¢/v=2 implies thatB=a/g is
a number,

T Lo IN(xc/xY)
—%In(xclx )

(D30)

B=

ALE (t )2
[t
- (D3Y)
ATEY

which is independent ofjy because of the scaling.f&f/
A% & ~(t)/t,)? that follows from Appendix A, EG(A15).

The universal crossover scaling function beyame o

Finally, thed=2 to d=3 crossover temperature is given by where the exponent$/vand y/v differ has yet to be inves-

u=A§=1. Obviously, the criterion\ £ =1 is subjective.
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