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The crossover from two- to three-dimensional critical behavior of nearly antiferromagnetic itinerant elec-
trons is studied in a regime where the interplane single-particle motion of electrons is quantum mechanically
incoherent because of thermal fluctuations. This is a relevant regime for very anisotropic materials like the
cuprates. The problem is studied within the two-particle self-consistent~TPSC! approach, which has been
previously shown to give a quantitative description of Monte Carlo data for the Hubbard model. It is shown
that the TPSC approach belongs to then→` limit of the O(n) universality class. However, contrary to the
usual approaches, cutoffs appear naturally in the microscopic TPSC theory so that parameter-free calculations
can be done for Hubbard models with arbitrary band structure. A general discussion of universality in the
renormalized-classical crossover fromd52 to d53 is also given.@S0163-1829~96!04021-0#

I. INTRODUCTION

A simple model of itinerant antiferromagnets is provided
by electrons on a lattice with short-range repulsion. In the
low-temperature phase, the system is in a spin density wave
~SDW! state. In three dimensions, above the transition tem-
perature, the electrons form a so-callednearly antiferromag-
netic Fermi liquid. Traditional mean-field techniques for
studying SDW instabilities of Fermi liquids fail completely
in low dimensions. In two dimensions, for example, the ran-
dom phase approximation~RPA! predicts finite-temperature
antiferromagnetic transitions while this is forbidden by the
Mermin-Wagner theorem. Nevertheless, one can study uni-
versal critical behavior using various forms of renormaliza-
tion group treatments appropriate either for the strong1–3 or
the weak-coupling limits.4,5 The self-consistent-renormalized
approach of Moryia6 also satisfies the Mermin-Wagner theo-
rem in two dimensions. Since cutoff-dependent scales are
left undetermined by all these approaches, they must be
found by other methods. For example, in the strong-coupling
limit, the spin-stiffness constant of the nonlinears model
must be determined from Monte Carlo simulations. In the
weak-coupling case however, Monte Carlo simulations are
limited to very small systems, of order 10310 which do not
allow one to study much of the critical regime.

Recently, the two-particle self-consistent~TPSC!
approach7 was developed to obtain from a microscopic
model aquantitativedescription of itinerant electrons not
only far from phase transitions, but also in the critical re-
gime. It was shown7 that in this approach the Mermin-
Wagner theorem is satisfied and that, away from the critical
regime, the approach gives quantitative agreement with
Monte Carlo simulations of the nearest-neighbor7 and
next-nearest-neighbor8 Hubbard model in two dimensions.
Quantitative agreement is also obtained as one enters the
narrow critical regime accessible in Monte Carlo simula-
tions. The approach is restricted to the one-band Hubbard
model with on-site interaction, but is valid for arbitrary dis-

persion relation. The TPSC approach also allows one to
study the case where the instability of the itinerant electrons
is at an incommensurate wave vector, but in this paper we
restrict ourselves to the case where the order is at the anti-
ferromagnetic wave vector. The self-consistent-renormalized
approach of Moryia6 cannot deal with the incommensurate
case withouta priori information. Even though it has the
same critical behavior as the TPSC approach, it does not
allow one to obtain quantitative parameter-free results from a
microscopic Hamiltonian.

We first show in full generality that the TPSC approach
gives the leading term of the critical behavior in a 1/n ex-
pansion. In other words, it gives then→` limit of the
O(n) model wheren53 is the physically correct~Heisen-
berg! limit. It will be apparent that there is no arbitrariness in
the cutoff so that, given a microscopic Hubbard model, no
parameter is left undetermined. One can go with the same
theory from the noncritical to the critical regime.

We then show that the previously studied two-
dimensional~2D! critical regimes, namely, quantum critical2

and renormalized classical,1 are reproduced here to leading
order in 1/n. In the quantum-critical regime, one usually dis-
tinguishes two cases:2 model A, where the paramagnetic
Fermi surface does not intersect the magnetic Brillouin zone,
and model B where it does. This distinction is important in
the quantum-critical regime because it changes the dynami-
cal critical exponent. In this paper, we also give results on
model C, the case of perfect nesting. In this case, the micro-
scopic approach shows that modifications to frequency-
independent thermodynamic properties can arise. In particu-
lar, in the two-dimensional perfect-nesting case the usual
exponential dependence of correlation length on temperature
exp(cst/T) can be modified to be roughly exp(cst/T3) in some
temperature region of the renormalized-classical regime.

Then we study the renormalized-classical crossover from
d52 to d53 in the highly anisotropic case of weakly
coupled planes.9 The general theory of such a crossover is
given in Appendix D, along with a discussion of universal
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crossover functions. In the main text it is shown that in the
highly anisotropic case the crossover can occur in a rather
unusual regime, namely,t i!kBTN!t' where t i(t') is the
interplane~intraplane! hopping integral andTN is the three-
dimensional Ne´el temperature. This regime is unusual be-
cause even though one is dealing with an itinerant fermion
system, the inequalityt i!kBTN means that the smallest fer-
mionic Matsubara frequency is larger than the dispersion in
the parallel direction, making the three-dimensional band
structure irrelevant for one-particle properties. In the lan-
guage of Refs. 10 and 11, there is ‘‘no coherent band mo-
tion’’ in the parallel direction. Physically, the extent of the
thermal de Broglie wave packet in the direction perpendicu-
lar to the planes is smaller than the distance between planes,
a situation that does not occur in a usual Fermi liquid since
in the isotropic case the inequalitykBT!EF implies that the
thermal de Broglie wavelength is much larger than the lattice
spacing. Another way of describing thist i!kBTN!t' situa-
tion is to say that the itinerant electrons become unstable at
the two-particle level while their motion in the third direction
is still quasiclassical, or quantum incoherent, at the single-
particle level because of thermal fluctuations. In the more
usual situation, coherence at the one-particle level is estab-
lished before the phase transition, namely,kBTN!t i!t' .
These two regimes have been extensively discussed in the
d51 to d53 crossover of Luttinger liquids by Bourbonnais
and co-workers.10,11

The above single-particle incoherent regime
t i!kBTN!t' is likely to be the relevant one for high-
temperature superconductors. While the parent insulating
compound La2CuO4 has been extensively studied in the
strong-coupling limit, this type of compound is expected to
be in an intermediate-coupling regime. Hence, it is legitimate
to approach the problem not only from the strong-coupling
limit 12 but also from the weak-coupling side, especially with
the TPSC approach where all cutoffs are determined by the
microscopic model. This problem is commented on at the
end of the paper. More detailed quantitative comparisons
with experiment will appear later.

II. TWO-PARTICLE SELF-CONSISTENT APPROACH

We start from the Hubbard model

H52 (
^ i j &s

t i , j~cis
† cjs1cjs

† cis!1U(
i
ni↑ni↓ . ~1!

In this expression, the operatorcis destroys an electron of
spins at sitei . Its adjointcis

† creates an electron. The sym-
metric hopping matrixt i , j determines the band structure.
Double occupation of a site costs an energyU due to the
screened Coulomb interaction. In the present section, the
hopping parameters need not be specified. We work in units
wherekB51 and\51. As an example that occurs later, the
dispersion relation in thed-dimensional nearest-neighbor
model when the lattice spacing isa is given by

ek522t(
i51

d

~coskia!. ~2!

The nearest-neighbor quasi-two-dimensional case will be an-
other case of interest later,

ek522t'~coskxa'1coskya'!22t icoskzai . ~3!

The TPSC approach7,13 can be summarized as follows.
One approximates spin and charge susceptibilitiesxsp, x ch
by RPA-like forms but with two different effective interac-
tions U sp and Uch which are then determined self-
consistently. Although the susceptibilities have a RPA func-
tional form, the physical properties of the theory are very
different from the RPA because of the self-consistency con-
ditions onUsp andUch. The necessity to have two different
effective interactions for spin and for charge is dictated by
the Pauli exclusion principlêns

2&5^ns& which implies that
bothxsp andxch are related to only one local pair correlation
function ^n↑n↓&. Indeed, using the fluctuation-dissipation
theorem in Matsubara formalism we have the exact sum
rules

^n↑
2&1^n↓

2&12^n↑n↓&2n25
1

bN(
q̃

xch~ q̃! ~4!

and

^n↑
2&1^n↓

2&22^n↑n↓&5
1

bN(
q̃

xsp~ q̃!, ~5!

whereb[1/T, n5^n↑&1^n↓&, q̃5(q,iqn) with q the wave
vectors of anN-site lattice, and withiqn52p inT the
bosonic Matsubara frequencies. The Pauli principle
^ns

2&5^ns& applied to the left-hand side of both equations
with our RPA-like forms forxsp, xch on the right-hand side
leads to

n12^n↑n↓&2n25
1

bN(
q̃

x0~ q̃!

11
1

2
Uchx0~ q̃!

, ~6!

n22^n↑n↓&5
1

bN(
q̃

x0~ q̃!

12
1

2
Uspx0~ q̃!

, ~7!

with x0(q̃) the susceptibility for noninteracting electrons.
If ^n↑n↓& is known,U sp andUch are determined from the

above equations. This key quantity^n↑n↓& can be obtained
from Monte Carlo simulations or by other means. However,
it may be also be obtained self-consistently7 by adding to the
above set of equations the relation

Usp5g↑↓~0!U, g↑↓~0![
^n↑n↓&

^n↓&^n↑&
. ~8!

Equations~7! and~8! define a set of self-consistent equations
for Usp that involve only two-particle quantities. We call this
approach two-particle self-consistent to contrast it with other
conserving approximations like Hartree-Fock or fluctuation
exchange approximation~FLEX! ~Ref. 14! that are self-
consistent at the one-particle level, but not at the two-particle
level. The above procedure7 reproduces both Kanamori-
Brueckner screening as well as the effect of Mermin-Wagner
thermal fluctuations, giving a phase transition only at zero
temperature in two dimensions, as discussed
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in the following section. Quantitative agreement with Monte
Carlo simulations on the nearest-neighbor7 and next-nearest-
neighbor models8 is obtained7 for all fillings and tempera-
tures in the weak- to intermediate-coupling regimeU,8t.

We emphasize that deep in the critical regime, the ansatz,
Eq. ~8!, fails in the sense thatg↑↓(0) eventually reaches zero
atT50 in the nearest-neighbor Hubbard model at half-filling
while there is no reason to believe that this really happens.
The physically appropriate choice in the renormalized-
classical regime described below is to keep the value of
g↑↓(0) fixed at its crossover-temperature value. In the nu-
merical calculations also described below, we are never far
enough fromTX to have to worry about this. The value of
g↑↓(0) is the one that is determined self-consistently.

III. CRITICAL BEHAVIOR OF THE TPSC APPROACH
IN ARBITRARY DIMENSION

In this section we discuss the critical behavior of the
TPSC approach in arbitrary dimension for hypercubic sys-
tems. It is convenient to set the lattice spacing to unity.

As one approaches a phase transition, one enters the
renormalized-classicalregime,1 where classical thermal fluc-
tuations dominate. In this case, the universality class for
static properties is fully determined by two exponents. Dy-
namics must also be considered so that one introduces a dy-
namical critical exponent.

We consider the case where the transition is at the anti-
ferromagnetic wave vectorQd in d dimensions:
Q25(p,p), Q35(p,p,p), etc. SinceQd is at the corner of
the Brillouin zone, the spin susceptibilityx0(Qd) is always,
by symmetry, an extremum. This extremum is the absolute
maximum at half-filling not only in the nearest-neighbor
hopping model, but also in more general models with next-
nearest-neighbor hopping.8,15 The nearest-neighbor model is
discussed in more detail at the end of this section. It has
some special features resulting from the additional nesting
symmetry. In the two-dimensional case, we also comment on
the peculiarities of nesting and on quantum-critical
behavior.3,2

A. Renormalized-classical regime

As one decreases the temperature sufficiently close to the
phase transition, there appears a small energy scaledU that
measures the proximity to the phase transition as determined
by the Stoner criterion. This scale is defined more precisely
in Eq. ~13!. The key physical point is that this energy scale is
the smallest. In particular, it is smaller than the temperature

dU!T, ~9!

so that the zero Matsubara frequency representing classical
behavior dominates all others. The self-consistency condi-
tions, Eqs.~7!, ~8!, then lead to a strong temperature depen-
dence ofdU. This is the renormalized-classical regime.1 In
this regime, the antiferromagnetic correlation lengthj be-
comes so large that13

j@j th , ~10!

where

j th[
^vF&
pT

~11!

is the single-particle thermal de Broglie wavelength and
^vF& is the Fermi velocity averaged over the Fermi surface.
This provides a partial justification for the usual procedure5,4

that eliminates completely the Fermionic variables and de-
scribes the system in terms of collective Bosonic variables,
as is usually done in Hubbard-Stratonovich types of
approaches.5,4

We first show that when most of the temperature depen-
dence of the susceptibility comes from the temperature de-
pendence ofdU, the RPA-like form that we have implies
that in any dimensionthe dynamical exponent isz52 while
the classical exponentg/n522h takes the valueg/n52.
The other classical exponentn is determined from the self-
consistency condition, Eq.~7!. We show that the correspond-
ing universality class is the same as then→` limit of the
O(n) classical model. This universality class is known in
turn to be the same as that of the spherical model.16 We
conclude this discussion with the lower critical dimension
d52. There the exponentn cannot strictly be defined since,
as was shown before,7 the correlation length diverges expo-
nentially at zero temperature instead of diverging as a power
law at finite temperature. This behavior is also the one ex-
pected from then→` model, although nesting leads to dif-
ferent temperature dependences that are explained further.

1. Exponentsg/n and z in arbitrary dimension

The antiferromagnetic transition is characterized by the
appearance of a small energy scale or, equivalently, a large
correlation length, in the retarded spin susceptibility

xsp
R ~q,v!5

x0
R~q,v!

12
1

2
Uspx0

R~q,v!

. ~12!

The small energy scale is set by

dU5Umf,c2Usp ~13!

where the temperature-dependent ’’mean-field critical’’ in-
teraction

Umf,c[2/x0~Qd,0! ~14!

is the temperature-dependent value ofUsp at which a phase
transition would occur according to mean-field theory. In the
vicinity of this point the small energy scaledU allows us to
approximatexsp

R (q,v) by expanding the denominator near
q'Qd andv'0 to obtain

xsp
R ~q1Qd,v!'j2

2

U spj0
2 F 1

11q2j22 ivj2/DG , ~15!

where the antiferromagnetic correlation length is defined by

j[j0SUsp

dU D 1/2, ~16!

with the microscopic length scale set by
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j0
2[

21

2x0~Qd!

]2x0~q,0!

]qx
2 U

q5Qd

. ~17!

The microscopic diffusion constantD is defined on the other
hand by

1

D
[

t0
j0
2 , ~18!

where the microscopic relaxation time is

t05
1

x0~Qd!

]x0
R~Qd,v!

] iv
U
v50

. ~19!

This relaxation time is nonzero in both models B and C
where the Fermi surface intersects the magnetic Brillouin
zone.

In the presence of a large correlation lengthj the scaling
q;j21 and v;j22 justifies the neglect of higher-order
terms in the expansion, Eq.~15!. Comparing the approximate
form, Eq. ~15!, with the general scaling expression

xsp
R ~q1Qd,v!'jg/nX~qj,vjz!, ~20!

whereX(qj,vjz) is a scaling function, we immediately have
the announced results

g

n
52, z52. ~21!

The Fisher scaling lawh522g/n shows that the anomalous
exponenth vanishes as in mean-field theory. In the follow-
ing paragraphs, we compute the remaining exponentn to
show that above four dimensions we do recover mean-field
theoryn51/2 while for 2,d,4, we have then→` result
n51/(d22).

2. Exponentn in 2<d<4 and equivalence
to spherical (ñ `) model

The correlation length exponent is determined by solving
self-consistently Eqs. ~7! and ~8! for the quantity
^n↑n↓&5Usp/U. In general, we do this numerically using
some technical tricks which are discussed below. With this
procedure, no arbitrariness is left in the cutoffs, which are
entirely determined from the microscopic Hubbard model.
However, to study analytically the critical behavior, we no-
tice that there is a crossover temperatureTX below which the
presence of the small energy scaledU !T makes the zero-
Matsubara-frequency component in the sum rule, Eq.~7!,
much larger than all the others. This is therenormalized-
classical regimediscussed above. Its existence is a manifes-
tation of critical slowing downv;j22 ;dU near a phase
transition. Using the approximate Lorentzian form, Eq.~15!,
for the iv5 iqn50 component we rewrite Eq.~7! as follows,
after a trivial shift of integration variables:

s̃25
2T

Uspj0
2E ddq

~2p!d
j2

11q2j2
. ~22!

In this equation,

s̃25n22^n↑n↓&2C<1 ~23!

is the local momentn22^n↑n↓& minus correctionsC that
come from the sum over nonzero Matsubara frequencies
~quantum effects! and from the terms neglected in the
Lorentzian approximation, namely, those coming from short
distances (q2Q…2@j22.

Contrary to the strong-coupling case, and contrary to
more usual approaches,2 s̃2 here is temperature dependent
because botĥn↑n↓& and C are. Nevertheless, to find the
critical behavior analytically, it suffices to notice that this
dependence is regular. In fact, we have that whenT.TX ,
the double occupancy can be approximated by
^n↑n↓&5Usp/U'Umf,c /U whendU→0.

At the Néel temperature,TN, the correlation length di-
verges,j5`, so that Eq.~22! determines the Ne´el tempera-
ture through

s̃25
2TN
Uspj0

2E ddq

~2p!d
1

q2
. ~24!

The wave vector integration is cut off at largeq by the Bril-
louin zone (2p,qi,p for any componentqi) so that the
only divergence occurs fromq50 in d<2 (q50→q5Qd
in the original integration variables!. Since the left-hand side
of this Eq. ~24! is finite, this divergence prevents the exist-
ence of a finite-temperature antiferromagnetic phase transi-
tion in two dimensions or less.

To find the correlation length exponent in 2,d,4, one
rewrites Eq.~22! in the form

s̃25
2T

Uspj0
2E ddq

~2p!d F j2

11q2j2
2

1

q2G
1

2T

U spj0
2E ddq

~2p!d F 1q2G . ~25!

Using the expression for the Ne´el temperature, Eq.~24!, this
last expression becomes

s̃2S 12
T

TN
D5

2T

U spj0
2 j22dE dd~qj!

~2p!d F 1

11q2j2
2

1

q2j2G .
~26!

Since the integral converges atqj→` for 2,d,4, it can be
replaced by aj-independent negative number and one finds

j;S TTN 21D 1/~22d!

;S TTN 21D 2n

, ~27!

which gives

n5
1

d22
. ~28!

This exponent andg/n 52, found in the previous section,
are the same as the one for the Berlin-Kac spherical model16

or equivalently for the generalized Heisenberg model where
spins aren components vectors andn→`. In three dimen-
sions, this leads to

n51, g52, a521, b5 1
2 , h50, and d55.

~29!
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For comparison, numerical results17 for the 3D Heisenberg
(n53) model given;0.7 andg;1.4.

Above d54, one recovers the mean-field results
g52n and n51/2. This last result follows from the fact
that in d.4, the integral in Eq.~26! is dominated by the
large momentum cutoff so that for j@1,
(12T/TN);j22*ddq/q4.

3. Two-dimensional case

We have already proved in the last subsection that the
transition temperature vanishes in two dimensions. The cor-
relation length may be found7 in the renormalized-classical
regime directly by performing the integral, Eq.~22!, in
d52,

j5j0~Usp/dU !1/2;L21exp~ps̃2j0
2Usp/T!, ~30!

whereL;p is usually of the order of the size of the Bril-
louin zone, but not always as we discuss below.

In d52, we callTX the temperature at whichdU is much
smaller than temperature and the magnetic correlation length
j grows exponentially. While in higher dimensions a phase
transition occurs at finite temperature, ind52 the critical
regime with an exponentially increasingj extends all the
way to zero temperature. For example, the temperatureTX is
plotted as a function of filling in the two-dimensional
nearest-neighbor Hubbard model forU52.5 in Fig. 1 of Ref.
7. In this reference,TX is called a quasicritical temperature.
We stress that there is a range of fillings near half-filling
where atTX it is the antiferromagnetic wave vector that
grows, despite the fact that at zero temperature the phase
transition would be at an incommensurate wave vector.

The exponential growth of the two-dimensionalj clearly
suggests that small 3D effects existing in real systems may
stabilize long-range order atQd53 , beforeT50. We later
characterize the crossover driven by a small 3D hopping pa-
rameter t i!t' from two-dimensional critical behavior to
three-dimensional critical behavior. But before, we do so, we
comment on the two-dimensional quantum-critical regime
and on peculiarities induced by nesting in the renormalized-
classical regime.

B. Quantum-critical regime

When there is a critical value of the interactionUc at zero
temperaturewhere one finds a paramagnet forU,Uc and an
antiferromagnet forU.Uc , then theT50, U5Uc point of
the phase diagram is a quantum-critical point.4 The vicinity
of this point in two dimensions has been studied again
recently.2 In order to study such a regime within the Hubbard
model at half-filling, one must introduce the next-nearest-
neighbor hopping sinceUc(T50)50 at this filling in the
nearest-neighbor model. One finds that the TPSC approach
has precisely then→` model A or model B quantum-
critical behavior,2 depending on the specific microscopic
model. In particular,j scales as 1/T as one approaches the
two-dimensional quantum-critical point from finite tempera-
ture. Again, in the TPSC approach the cutoffs are specified
without ambiguity. Model C, the perfect nesting case, is rel-
evant only to the renormalized-classical case, as we now
discuss.

C. Peculiarities induced by perfect nesting
in the renormalized-classical regime, especially ind52

The dispersion relation of the nearest-neighbor Hubbard
model on hypercubic lattices in arbitrary dimension satisfies
ek1Qd

52ek . Furthermore, at half-filling the particle-hole
symmetry implies that the Fermi surface is fully nested,
namely,m50, so that the equalityek1Qd

2m52(ek2m) is

satisfied for all wave vectorsk. Slightly away from half-
filling, nesting in the formek1Qd

2m;2(ek2m) is also a

goodapproximationat finite temperature as long asT.m, as
discussed above. When there is perfect nesting, the zero tem-
perature critical interaction vanishes (Uc50). Hence the
fully nested Fermi surface, referred to as model C above,
does not have the simple quantum-critical point described in
the previous subsection.

When there is perfect nesting, the microscopic
interaction-independent quantitiesj0

2 andt0 have a peculiar
temperature dependence. This occurs because they are de-
rivatives of the susceptibility which itself contains logarith-
mic singularities in the zero temperature limit. These quan-
tities are evaluated in two dimensions and in the quasi-two-
dimensional case in Appendix A. Dimensional arguments
that follow simply from this appendix show that ind.2

j0
2;1/~T2lnT21!, ~31!

t0;1/~TlnT21!. ~32!

In d52, the lnT21 is replaced by ln2T21.18

By contrast, in the case of second-neighbor hopping, nest-
ing is lost and the above quantities are temperature indepen-
dent for a wide range of values of the second-neighbor hop-
ping constant. The above temperature dependences are then a
special property of nesting. Ind.2, however, the above tem-
perature dependences are completely negligible in the critical
regime since near the phase transition one can replaceT in
the above expressions byTN .

The only issue then is in two dimensions where the phase
transition occurs at zero temperature. Even neglecting loga-
rithms for the moment, one sees that sincej0

2 scales as
1/T2 over a wide temperature range, the correlation length in

FIG. 1. Semilogarithmic plot of the two-dimensional correlation
length, showing the scaling as a function of temperature in the case
of nesting.
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Eq. ~30! scales as exp(cst/T3). By contrast, in strong cou-
pling, or in the nonnesting case of the weak-coupling limit,
the correlation length scales as exp(cst/T).

The exp@cst/(T3ln2T21)# behavior is, however, largely an
unsolved problem. Indeed, in the critical regime in two di-
mensions, fluctuations remove the quasiparticle peak and re-
place it by precursors of the antiferromagnetic bands, as
shown in Ref. 13. It is possible then that, in this regime, a
more self-consistent treatment would lead toj0

2 independent
of temperature, as in the strong-coupling case or the
nonnested weak-coupling case. It is also likely that there
will be an intermediate-temperature range where the
exp@cst/(T3ln2T21)# regime prevails, even if deep in the criti-
cal regime self-consistency leads to exp(cst/T) behavior.

It is important to recall that in practical calculations in the
TPSC approach, one obtains a numerical value for the cor-
relation length without adjustable parameter. For example, in
Fig. 1 we present the temperature dependence of the corre-
lation length for the two-dimensional nearest-neighbor Hub-
bard model. As discussed in Appendix A, in this case

j0
2.0.021Umf,ct'

2a'
2 /T2 ~33!

andUsp.Umf,c so that from the slope of the plot and from
Eq. ~30! one finds s̃2.0.21. From the plot we can also
extractL21.0.022 so thatj is known without an adjustable
parameter. Appendix B explains physically the orders of
magnitude taken bys̃2 andL21 in this model. Similar cal-
culations can be done for arbitrary band structure. In strong-
coupling calculations,1,3 one obtainsj;L21exp(2prS/T)
with rS a cutoff-dependent quantity that can be evaluated
only with Monte Carlo simulations.

Another consequence of the temperature behavior ofj0 in
Eq. ~31! is thatabove TX there is a range of temperatures for
which the antiferromagnetic correlation length scales asj
;j0;1/T. This behavior should not be confused with
quantum-critical behavior, even though the power-law scal-
ing of the correlation length is the same. Indeed, one finds
that the argument of the exponential in Eq.~30! is larger than
unity in the corresponding regime while in the quantum-
critical regime the argument of the exponential should be
much less than unity.2 In fact the temperature dependence of
the staggered susceptibility forT.TX is also different from
the quantum-critical result.

IV. QUASI-TWO-DIMENSIONAL SYSTEMS:
RENORMALIZED-CLASSICAL CROSSOVER

FROM d52 TO d53

The general discussion of universality in the
renormalized-classical crossover fromd52 to d53 appears
in Appendixes C and D. In the present section, we first
clarify the various regimes of crossover, according to
whether or not single-particle coherence in the third dimen-
sion is established before the phase transition. Then, we go
on to discuss the caset i!TN,TX where the SDW instability
occurs before interplane single-particle coherence is estab-
lished. More specifically, we find the scaling of the Ne´el
temperature witht' /t i as well as the size of the three-
dimensional critical regime with the corresponding expo-
nents, showing that the results are those of then→` limit.

We restore the lattice spacing unitsai along the three-
dimensional axis anda' in the planes. We assume, however,
that the ratioai /a' is usually of order unity and numerical
calculations are done forai /a'51

A. One-particle and two-particle crossover fromd52 to d53

We consider in this section the highly anisotropic situa-
tion where hopping between planes,t i , is much smaller than
in-plane hoppingt' ,

t i!t' , ~34!

as might occur in the high-temperature superconductor par-
ent compound La2CuO4. In this case, we have that the
three-dimensional transition temperature to long-range order
TN is always less than the crossover temperatureTX to the
characteristic exponential behavior of the correlation length
in two dimensions:

TN,TX . ~35!

This is so because the microscopic in-planej0
' and out-of-

planej0
i lengths satisfyj0

' @j0
i .

The crossover temperature to two-dimensional behavior
for itinerant antiferromagnet al.ways satisfies

TX,t' . ~36!

Two limiting cases are then possible, depending on interac-
tion and on hopping parallel to the three-dimensional axis
t i .

~a! Weak coupling or small anisotropy limit

TN,TX!t i . ~37!

In this case, when the transition to three-dimensional behav-
ior occurs the three-dimensional Fermi surface is relevant
since the thermal de Broglie wavelengthvF

i /(pT); t iai /T
is larger than the distance between planes. In other words,
the three-dimensional band structure is relevant to the behav-
ior of single-particlepropagators in Matsubara frequencies
before the phase transition occurs. Fermions are quantum
mechanically coherent over more than a single plane and
nesting generally plays a role in the value of the ordering
wave vector. The crossover from two- to three-dimensional
critical behavior would occur in a manner analogous to the
anisotropic Heisenberg model.19–22

~b! Intermediate coupling or very large anisotropy

t i!TN,TX . ~38!

Here, long-range order is established before the single-
particle coherence occurs between planes. A phase transition
occurs only because oftwo-particle~or particle-hole! coher-
ent hopping. When the phase transition occurs, thermal fluc-
tuations are still large enough that coherent single-particle
band motion in the parallel direction has not occured yet.
There are several ways of explaining physically what this
last statement means. For example, it is clear that when
t i!T, features of the band structure in the parallel direction
are irrelevant for single-particle properties since the first
Matsubara frequency is larger than the bandwidth in that
direction. The motionbetweenplanes is still in that sense
quasiclassical when the phase transition occurs. Another way
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of saying what this means is that the thermally induced un-
certainty in the parallel wave vector is equal to the extent of
the Brillouin zone in that direction, corresponding, via the
uncertainty principle, to a confinement within each plane.

We do not discuss the intermediate caseTN,t i,TX but
concentrate instead on the very-large-anisotropy–
intermediate-coupling limit just introduced.

B. Numerical solutions

The scaling behaviors of the Ne´el temperatureTN and of
the three-dimensional crossover temperature are derived in
the following two sections. We first present the numerical
results obtained from the solution of the self-consistency re-
lations, Eqs.~7! and~8!. The numerical integration in Eq.~7!
is made possible by rewriting this equation in the form

n22^n↑n↓&5Taia'
2 E d3q

~2p!3(iqn
@x sp~q,iqn!

2xsp
as~q,0!dn,0#1Taia'

2 E d3q

~2p!3
xsp
as~q,0!.

~39!

The sum over large Matsubara frequencies can be approxi-
mated by an integral in a controlled manner. The subtraction
in the first integral removes singularities of the integrand and
makes the integral well behaved. Since the transition occurs
in the single-particle incoherent regime, Eq.~38!, the inte-
grand in square brackets is independent ofqi above the Ne´el
temperature. All quantities involvingt i come from the sec-
ond integral over the asymptotic expression for the suscepti-
bility,

xsp
as~q1Q3,0![

2

dU

1

11j i
2qi

21j'
2q'

2 , ~40!

where

j'[j0
'~Usp/dU !1/2, ~41!

j i[j0
i ~Usp/dU !1/2. ~42!

To have sufficient precision for large two-dimensional cor-
relation lengths, it is important to evaluate analyticallyj0

' ,
j0

i , as well as the integral of Eq.~40! appearing in the con-
sistency equation~39!. This is done respectively in Appen-
dixes A and C. To perform the second derivatives in the
definition of j0

' , j0
i , we expandx0(Q3) in powers oft i /T,

keeping only the first nonzero term: Thusj0
' does not differ

from the one already presented in Eq.~33!. It is shown in
Appendix A that over a wide range of temperatures we have

]2x0~Q3!

]q'
2 ;a'

2 F t'2T2 1O~ t i /T!G ~43!

and

]2x0~Q3!

]qi
2 ;ai

2F t i
2

T2
1O~ t i

3/T3!G . ~44!

The interplane hoppingt i in Eqs. ~39! and ~40! occurs ex-
plicitly only in j0

i and the above results imply that

j0
i

j0
' ;

j i

j'

;
t iai

t'a'

. ~45!

We present numerical results for the nearest-neighbor
Hubbard model in units whereai5a'51 and t'51. The
value ofTN(t i) appears in Figs. 2 and 3 forU54. In Fig. 2,
we clearly see thatTN becomes almost equal toTX'0.2 for
t i still quite small. The scaling ofTN(t i) shown in Fig. 3 is
explained in the following subsection. Figure 4 shows the
variation of the in-plane correlation lengthj' as a function
of temperature for varioust i , again forU54. For the purely
two-dimensional case t i 50, one can observe for
T<TX.0.2 the exponential behavior mentioned in the pre-
ceding section. At a temperature about 0.16, the in-plane
correlation lengthj' is already as much as 103 ~in units
where lattice space is unity!. For 1023<t i<1021, j' di-
verges at the Ne´el temperature located in the narrow range
0.16<TN<0.2. Fort i Þ0, it is also clear that the crossover
to three-dimensional behavior occurs in an extremely narrow
temperature range. This is explained below. Note that the last
few curves on the right-hand side are at the limit of validity
of our approximations.

We note that forU54t, we find that atT5TN the local
moment is equal to three-quarters of the full moment in
the atomic limit, i.e.,n22^n↑&^n↓&g↑↓(0)50.75, g↑↓(0)

FIG. 2. Néel temperature as a function oftz [t i for U54t' , at
half-filling.

FIG. 3. 1/TN as a function of (TN
2 /Umfc

2 )u ln(tz /t)u for U54t' at
half-filling. The quantitiesT and tz [t i are in units oft'5t.
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5^n↑n↓&/^n↑&^n↓&. This number is only weakly dependent
on temperature in the range studied.

C. Dependence of the Ne´el temperature TN on t i :
Crossover exponent

From the discussion of the previous section, Eqs.~39!,
~40!, and ~22!, we know that the singular part of the self-
consistency condition may be written in the following form
in the quasi-two-dimensional case:

s̃25
2Taia'

2

Usp~j0
'!2

E d3q

~2p!3
1

q'
21j'

221~j i/j'!2qi
2 . ~46!

The integral can be done exactly, as in Appendix C, and all
the results obtained in this subsection and the following one
can be obtained from limiting cases of this general analytical
result, as shown in Appendix D. Here we make approxima-
tions directly on the integrals since this makes the physics of
the results more transparent. Although arbitrary cutoffs ap-
pear in the analytical expressions, we reemphasize that in the
numerical calculations of the previous section the cutoffs are
simply given by the Brillouin zone and there is no arbitrary
scale in the results.

At TN , we havej'
2250. Furthermore, from Eqs.~41! and

~42! we find j i /j'5j0
i /j0

' so that the above integral, Eq.
~46!, takes the form

s̃25
2TNaia'

2

Usp~j0
'!2

E d2q'

~2p!2 F E dqi

2p

1

q'
21~j0

i /j0
'!2qi

2G .
~47!

Using the mean-value theorem for the integral overqi we
have

s̃25
2TNa'

2

Usp~j0
'!2

E d2q'

~2p!2F 1

q'
21S j0

i

j0
'D 2L̃2G , ~48!

where L̃ is a constant that we need not specify. It is con-
tained in the range 0, uL̃u,p/ai . The above integral is the
same as the one that determines the correlation length in two
dimensions, Eq.~22!; hence atTN we have that

j2d
22~TN!5S j0

i

j0
'D 2L̃2}S t iai

t'a'
D 2L̃2. ~49!

Comparing with the general theory of Appendix D where it
is argued thatj2d

2f/n(TN);t i
2 , we see thatf/n52. In other

words,f/n5g/n52 and the crossover exponent17 f is here
equal tog as is usually the case in then→` model.23 We
obtain, using expression~30! for the correlation length in
two dimensions,

1

TN
5

a'
2

ps̃2U sp~j0
'!2

F lnt't i
1cG , ~50!

wherec is a nonuniversal constant of order unity.
In the special case of perfect nesting~half-filled nearest-

neighbor hopping model!, the microscopic lengthj0
' is tem-

perature dependent, as shown in Appendix A,

~j0
'!2;a'

2 0.085

T2
1

2x~Q2!
. ~51!

Using this result as well asUmf,c[2/x(Q2)'Usp at
TX'TN gives the scaling illustrated in Fig. 3 for the case
a' /ai51, namely,

1

TN
;

TN
2

Umf,c
2 U ln t i

t'
U. ~52!

The logarithmic behavior in Eq.~50! is typical of systems
that undergo a dimensional crossover from their lower criti-
cal dimension. For example, the analog of Eq.~49! in the
anisotropic Heisenberg case would read19

j2d
22~TN!;S Ji

J'
D L̃2, ~53!

leading to19 TN
21; ln(Ji /J'). The above results, Eqs.~49! and

~53!, are suggested by the simple RPA-like form
x3d;x2d /(12Jix2d) with Jix2d;1 at the transition and
x2d;j2d

g/n;j2d
2 ;exp(J'cst/T). As in the previous section,

the quantityUsp(j0
',i)2 plays a role analogous to the ex-

change constantsJ'i , . In the perfect nesting case, these ef-
fective exchange constants would be temperature dependent
sinceUsp(j0

',i)2 ;Usp(t',i)
2/T2. Note that in the crossover

from one-dimensional Luttinger liquid behavior to three-
dimensional long-range order, the effective exchange con-
stantJ' also scales10,11asut'

2 /T2, with u a running coupling
constant. The one-dimensional Fermi surface is nested.

D. Size of the three-dimensional critical region

The singular temperature dependence of the correlation
length is obtained from the equation

s̃25
2Taia'

2

dU E d3q

~2p!3
1

11j'
2q'

21j i
2qi

2 . ~54!

Since the ratioj i /j'5j0
i /j0

' is temperature independent, a
simple change of integration variables shows that nearTN
the scaling of both correlation lengths with temperature is
identical to the isotropic three-dimensional case. In other
words, the critical behavior near the phase transition is that

FIG. 4. In-plane correlation lengthj' ~lattice spacing is unity!
for several values of out-of-plane hopping parameter at half filling
for U54t' . T and tz [t i are in units oft' .
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of the three-dimensional system. However, as one increases
the temperature away fromTN , the correlation lengths can
decrease untilj i!ai while at the same timej'@a' . When
j i!ai , the integral, Eq.~54!, is essentially two dimensional
and forj'@a' one should observe the characteristic expo-
nential temperature dependence of the two-dimensional cor-
relation length.

As usual, the definition of crossover contains some arbi-
trariness, and so let us choose

j i~T* !5ai ~55!

as the definition of the crossover temperatureT* between
d52 andd53 critical behavior. In that regime, the correla-
tion length, Eq. ~55!, scales with temperature as in the
d52 regime, Eq.~30!, except that, as argued before,j i is
smaller by a factor (j0

i /j0
')5(t iai)/(t'a'); hence we obtain

for T*

1

T*
5

a'
2

ps̃2U sp~j0
'!2

F lnS t't i
D1c8G , ~56!

wherec8 is a nonuniversal constant of order unity. The size
of the crossover region is thus

12
TN
T*

5TN
a'
2

ps̃2Usp~j0
'!2

~c2c8!

5
~c2c8!

ln~ t' /t i!1c
;

1

ln~ t' /t i!
. ~57!

The above results, Eqs.~55! – ~57!, are as expected from the
usual theory of critical phenomena exposed in Appendix D.
In particular, the scaling ofT* with t i /t' is the same as that
of TN . The smallness of the crossover region fromd52 to
d53 critical behavior in Fig. 4 follows from the above con-
siderations. The smaller isTN , the smaller isT* . The above
situation should be contrasted with the problem of crossover
from d53 to d52 in helium films, studied by Fisher and
Barber.24 In that case, power-law scaling occurred every-
where, giving quite different expressions for the scaling of
T* andTN .

Given j i(T* )5j0
i (T* )@Usp/dU(T* )#

1/2 and j0
i ;t i , the

above relationj i(T* )5ai means thatdU(T* ) should scale
as t i

2 . Similarly we should havedU(TN);t i
2 . We checked

numerically25 that the scaling witht i holds fort i,0.05 in the
half-filled nearest-neighbor model withU54t' .

V. CONCLUSION

We have shown that the TPSC approach allows one to
study all aspects of nearly antiferromagnetic itinerant elec-
trons in one-band Hubbard models. The method is in quan-
titative agreement with Monte Carlo simulations in the non-
critical regime7,8 while in the critical regime~renormalized-
classical or quantum-critical! the relatively weak temperature
dependence of the local moment leads to the same critical
behavior as strong-coupling models to leading order in the
1/n expansion, namely, in then→` limit. There is no arbi-
trary cutoff so that all results can be obtained as a function of
lattice spacing, hopping integral, and interaction parameter.
Fermi surface effects are apparent, in particular in the case of

perfect nesting where the two-dimensional renormalized-
classical correlation length diverges as exp@cst/(T3ln2T)# in-
stead of exp(cst/T) .

We have applied the method to a detailed study of the
renormalized-classical crossover from two to three dimen-
sions where we have highlighted the existence of a regime
where the three-dimensional Ne´el instability occurs before
thermal fluctuations become small enough to allow coherent
single-particle band motion between planes. In this regime,
the single-particle spectral weight could exhibit the two-
dimensional precursors of antiferromagnetic bands13 above
the three-dimensional Ne´el temperature.

The TPSC approach can be applied to study realistic
cases. For La2CuO4 we will show in a subsequent publica-
tion that with second-neighbor hopping one can fit experi-
ments on the magnetic structure factor.

The generalization of the TPSC approach beyond leading
order in 1/n is left open. Also, the effect of self-energy
feedback13 on exp@cst/(T3ln2T)# behavior of the correlation
length in the two-dimensional nesting case should be cleared
in further studies. Finally, the universald52 to d53 cross-
over discussed in Appendix D should be investigated beyond
leading order in 1/n.
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APPENDIX A: j0
i ,' AND t0 IN THE CASE OF NESTING

In this appendix we derive expressions for the out-of-
planej0

i and in-planej0
' microscopic lengths,

j0
i ,'5

21

2x0~Qd!

]2x0~q,0!

]qi ,'
2 U

q5Qd

, ~A1!

as well as for the microscopic relaxation timet0 in Eq. ~19!,

t05
1

x0~Qd!

]x0
R~Qd,v!

] iv
U
v50

, ~A2!

for the quasi-two-dimensional antiferromagnetQ3
5(p,p,p) , in the regimet i!TN,TX of Eq. ~38!. We also
assume thatm!T so that the maximum of the static suscep-
tibility is at Q3 even away from half-filling.

We start from the retarded Lindhard function ind dimen-
sions,

x0
R~q,v!52aia'

2 E
BZ

ddk

~2p!d
f ~ek1q2m!2 f ~ek2m!

v1 ih2ek1q1ek
,

~A3!

where f is the Fermi function andm the chemical potential
(m50 at half-filling for our Hamiltonian but the expressions
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quoted here are more general than for the half-filled case!.
For nearest-neighbor hopping, we have the nesting property

ek1Qd
52ek , ~A4!

which can be used to rewrite

x0
R~Qd ,v!52E dENd~E!

12 f ~E1m!2 f ~E2m!

v1 ih12E
,

~A5!

whereNd(E) is the single-spin density of states for the given
dimension.

In the limit m!T we have for the static susceptibility

x0~Qd![x0
R~Q3,0!52E dENd~E!

122 f ~E!

2E
, ~A6!

so that in two dimensionsx0(Q2); ln2(t/T) while in three
dimensionsx0(Q3); ln(t/T). In the quasi two-dimensional
case witht i!T the two-dimensional value ofx0 is an accu-
rate approximation. The numerical values ofx0(Qd) are in
practice easy to obtain from numerical integrations.

For the microscopic relaxation time whenm!T we start
from

Imx0
R~Qd ,v!5pNdS v

2 D tanhS v

4TD . ~A7!

In two dimensions, the logarithmic divergence of the density
of statesNd(v/2) at the van Hove singularity makes the zero
frequency limit of the microscopic relaxation time ill de-
fined. Nevertheless, van Hove singularities are usually
washed out by lifetime effects in more self-consistent treat-
ments so that one expects that forv,,T one has
]x0

R(Qd,v)/dvuv50;1/T, leading to the temperature scal-
ing of t0;(TlnT21)21 in d.2 described in the text.

We move on to evaluate analytically the wave vector de-
rivatives in the regimet i!TN,TX . Keeping for a while a
general notation wherei is some direction (x, y, or z), one
can write

]2x0

]qi
2 528t i

2ai
2E

BZ

d3k

~2p!3
]2C

]ek1q
2 sin2~ki1qi !

24t iaiE
BZ

d3k

~2p!3
]C

]ek1q
cos~ki1qi !,

~A8!

where

C~ek1q ,ek!5
f ~ek1q2m!2 f ~ek2m!

ek1q2ek
.

Assuming t i /T!1, we evaluate second derivatives to the
lowest nonzero term in powers oft i /T. Forqi5qi , the lead-
ing term in Eq. ~A8! gives a t i

2 contribution if we keep
t i50 in the integrand. The second term gives also to leading
order a quadratic contribution int i . The spread of the Fermi
factors over an energy interval of orderT allows us to ne-
glect all other dependences int i and to perform the integral
in the third direction trivially, enabling us to rewrite the re-
maining integral in terms of the two-dimensional single-spin
density of statesN2(E). After some algebra we get

]2x0~Q3!

]qi
2 522t i

2ai
2E

0

4t

dEN2~E!H f 8~E1m!1 f 8~E2m!

E2

1
12 f ~E1m!2 f ~E2m!

E3 J 1O XS t i

TD 3 C ,
~A9!

where f 8 is the derivative of the Fermi function. Using the
expansion of Fermi functions and derivatives nearE50, it
can be shown that the integrand in the preceding equation is
finite at finite temperature. Indeed asE/T→0, it behaves as
N2(E) f 98(m), wheref 98 is the third derivative of the Fermi
function. At low-temperature, approximating the integrand
by N2(E) f 98(m) over an energy intervalT shows immedi-
ately that

]2x0~Q3!

]qi
2 ;ai

2
t i
2

T2
. ~A10!

More precisely, 1/T2 should be multiplied by a logarithmic
correction that comes from the 2D density of states. Numeri-
cal integration of~A9! shows that thist i

2(1/T2) behavior oc-
curs on a wider range of temperature than first expected:
T50.2t is already in this regime.

We can evaluate the in-planeqi5q' derivative in the
same spirit. This time taket i50 from the start since the
leading order is in t'

2 /T2@ t i
2/T2. We thus have

]2x0(Q3)/]q'
2 ']2x0(Q2)/]q'

2 . After tedious algebra we
finally get

]2x0~Q3!

]q'
2 .t'

2a'
2 E

0

4t

dEN2~E!H 12 @ f 8~E1m!1 f 8~E2m!#1
12 f ~E1m!2 f ~E2m!

2E J
2t'

2a'
2 E

0

4t

dEM~E!H 1E @ f 9~E1m!1 f 9~E2m!#2
f 8~E1m!1 f 8~E2m!

E2 2
12 f ~E1m!2 f ~E2m!

E3 J ,
~A11!
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where the integral

M ~E![E
2p

p

dqx4sin
2qxE d2k

~2p!2
d~E2ek!d~qx2kx!

~A12!

can be interpreted as an average over the surface of constant
energyE of the square of the Fermi velocity in thex direc-
tion times the density of states at this energy. It can be evalu-
ated analytically as

M ~E!5
2

p2 H 2E~k2!2
E

2t'
S 11

E

2t'
DF~k2!

1
E2

4t'
2 P~a2,k2!J . ~A13!

HereF(k2), E(k2) andP(a2,k2) are complete elliptic inte-
grals of respectively first, second, and third kinds, with
k2512E2/(16t'

2 ), anda2512E/(4t'). Again atE/T50
the integrand in Eq.~A11! is well defined, and using Fermi
function expansion it can be shown that at low-temperature
]2x0(Q)/]q'

2 scales asa'
2 t'

2 /T2, with this timeno logarith-
mic prefactor as before. More precisely we found numeri-
cally for a wide range of temperature~wider than the range
studied in the main text! the behavior

]2x0~Q3!

]q'
2 .20.085a'

2
t'
2

T2
~A14!

and, correspondingly,

~j0
'!2[

21

2x0~Qd!

]2x0~q,0!

]q'
2 U

q5Qd

.0.085a'
2 Umf,c

4

t'
2

T2
.

From Eqs.~A10! and ~A14! and a numerical evaluation of
the corresponding quantities, one finds the scaling

j0
i

j0
' .

t iai

t'a'

. ~A15!

To conclude this appendix let us stress the fact that ex-
pandingx0(q2Q2) to the second order using Eq.~A11! to
obtain the asymptotic form of the 2D spin susceptibility is
valid as long as the maximum ofx0 is at (p,p), which is
more general than half-filling. Indeed, by symmetry, the first
derivative of the free susceptibility atQ2 is zero for all fill-
ingsn and temperature, and, as discussed before,26,7 at finite
temperature and away from half-filling the absolute maxi-
mum of the free susceptibility can be at (p,p) even if it is
not the case atT50. This behavior can be observed in Fig. 5
where the in-plane second derivative is plotted as a function
of temperature for various values of band filling. When the
second derivative goes to zero there is a shift in the wave
vector, maximizing the free susceptibility. Whether the mag-
netic transition will be commensurate or incommensurate at

a given filling depends on the interactionU because by
changingU one can change the ratiom/TX and because the
nature of the final three-dimensional order depends very
much at which wave vector correlations start to grow below
TX .

7

Calculations presented along the above lines do not allow
us to study the case where the maximum occurs at an incom-
mensurate vector since we need the analytical expressions
for the second derivatives ofx0 to perform very accurate
numerical calculations.@When the wave vectorq is different
from (p,p) we do not have anymore the useful simplifica-
tion: ek1q52ek , allowing us to replace the (kx ,ky) integra-
tion in Eq. ~A8! by a simpler integral on the 2D density of
states.# Progress is nevertheless possible numerically within
the TPSC approach.

APPENDIX B: ESTIMATES FOR s̃2 AND L21

IN THE NEAREST-NEIGHBOR MODEL

In this appendix we provide estimates fors̃2 andL21 in
the isotropic two-dimensional nearest-neighbor model. The
surprisingly low numerical valuess̃2.0.21, L21.0.022
obtained forU54 in the text are special to the model C
perfect nesting case.

We first rearrange the self-consistency equation Eq.~7! to
isolate the asymptotic behavior, as we did in Eq.~39! but
here in two dimensions and witha'51:

n22^n↑n↓&5TE d2q

~2p!2
xsp
as~q,0!1TE d2q

~2p!2

3(
iqn

@xsp~q,iqn!2xsp
as~q,0!dn,0#.

~B1!

It is usually assumed that the last integral on the right-hand
side is weakly temperature dependent and it is included with
the left-hand side to defines̃2 . This procedure usually suf-
fices for reasons we will see below. For a more accurate
estimate ofs̃2 close toTX we use the Euler-Maclaurin for-
mula to approximate the sum over Matsubara frequencies
larger than the zeroth one by an integral. Recalling also that
xsp(q,iqn)5xsp(q,2 iqn) we have

FIG. 5. Second in-plane derivative of the noninteracting suscep-
tibility I (n,T)5]2x0(q,0)/]

2q'uQ in two dimensions as a function
of temperature for various band fillingsn.
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n22^n↑n↓&5TE d2q

~2p!2
xsp
as~q,0!

1TE d2q

~2p!2
@xsp~q,0!2xsp

as~q,0!#

1TE d2q

~2p!2
xsp~q,iq1!

12E
2pT

` dl

2pE d2q

~2p!2
xsp~q,il!. ~B2!

To recast this result in the same form as the consistency
condition, Eq.~22!, we first note that a more satisfactory
definition of s̃2 than the one given in Eq.~23! would be

s̃25n22^n↑n↓&22E
2pT

` dl

2pE d2q

~2p!2
xsp~q,il!. ~B3!

Also, the coefficient of the term linear in temperature on the
right-hand side of Eq.~22! would not only include the as-
ymptotic Lorentzian form but also a correction from the de-
viation to Lorentzian and another correction from the first
Matsubara frequency. Overall, then, a more accurate expres-
sion for the consistency condition is given by the last defi-
nition of s̃2 and

s̃25TH E d2q

~2p!2
xsp
as~q,0!1E d2q

~2p!2
@xsp~q,0!2xsp

as~q,0!#

1E d2q

~2p!2
xsp~q,iq1!J . ~B4!

The rest of this appendix is in two parts. We first estimate the
left-hand side of this equation,s̃2 , and then we estimate the
integrals on the right-hand side to obtainL21.

To obtains̃2, one should first notice that at the crossover
temperature the local momentn22^n↑n↓& is already quite
close to its zero temperature value. Taking this as an esti-
mate, we have

n22^n↑n↓&52E
0

`dl

2pE d2q

~2p!2
xsp~q,il!, ~B5!

so that, substituting back into Eq.~B3!, we have

s̃252E
0

2pTdl

2pE d2q

~2p!2
xsp~q,il!. ~B6!

To estimate this integral for the case of perfect nesting, we
note that singularities ofxsp(q,0) near wave vectorsq50
andq5(p,p) are integrable singularities. We thus use the
mean-value theorem to write, in our dimensionless units,

E d2q

~2p!2
xsp~q,il!.xsp~qtyp,il!. ~B7!

As a representative point, one can takeqtyp5(p,0) since it is
far from both singularities. Using the trapezoidal rule to es-
timate the frequency integral, one has

s̃2.2
2pT

2p Fxsp~qtyp,0!1xsp~qtyp,2pT!

2 G.0.19, ~B8!

whose numerical value follows from results obtained for
U54, TX.0.2, Usp.Umf,c.2,

xsp~qtyp,0!.0.60,

xsp~qtyp,2pTx!.0.36. ~B9!

The estimated numerical value ofs̃2 in Eq. ~B8! corresponds
closely to the value obtained in the text from accurate nu-
merical solutions. The fact thats̃2 scales roughly as
TX;Tmf,c in very weak coupling, as follows from Eq.~B8!,
is a significant result sinces̃2 is also related to the size of the
pseudogap between precursors of antiferromagnetic bands,
as shown in Ref. 13.

To estimate the value ofL21, we notice that in the usual
consistency condition, Eq.~22!, one keeps only the first term
on the right-hand side of the more accurate expression, Eq.
~B4!. The effect of the other terms is mimicked by using an
effective cutoffL that is not equal to the Brillouin zone size,
as one might have naively expected. In other words, the ef-
fective cutoffL may be obtained by requiring that

E
0

Lqdq

2p
xsp
as~q,0!5E

0

pqdq

2p
xsp
as~q,0!1E d2q

~2p!2

3@xsp~q,0!2xsp
as~q,0!#

1E d2q

~2p!2
xsp~q,iq1!. ~B10!

When there is no nesting, the quantityj0 is relatively small
at the crossover temperature, meaning that the asymptotic
Lorentzian form is not so peaked and should be a good esti-
mate of the susceptibility over much of the Brillouin zone.
Because of the slow decay of the asymptotic form
xsp
as(q,0), thesecond integral should in fact be negative and

should partly cancel the last integral so that we should have
L;p. By contrast, for perfect nestingj0;1/T is large, as
seen in Appendix A, meaning that in this case the asymptotic
form xsp

as(q,0) is valid only in a narrow range ofq values.
Over most of the Brillouin zone, away from the maximum,
the true susceptibilityxsp(q,0) is larger than the asymptotic
onexsp

as(q,0) because the latter decays rapidly away from the
maximum while the true one has an extremum at both the
Brillouin zone corner and center. The same arguments as
those used to evaluate integrals fors̃2 allow us then to esti-
mate

E d2q

~2p!2
@xsp~q,0!2xsp

as~q,0!#.xsp~qtyp,0!.0.60,

~B11!

E d2q

~2p!2
xsp~q,iq1!.xsp~qtyp,2pTx!.0.36, ~B12!

so that the equation, Eq.~B10!, that determines the cutoff
becomes, withUsp.2 andj0

2(TX).1,
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E
p

Lqdq

2p
xsp
as~q,0!5E

p

Lqdq

2p

2

Uspj0
2

1

j221q2
.0.96,

~B13!

L215p21expS 2
pUspj0

2

2
0.96D .0.016. ~B14!

Although the difference with the numerically accurate result
seems relatively large, one should really compare the esti-
mates of lnL21. The above estimate, ln0.016.24.1, differs
only by roughly 10% from the estimate, ln0.022523.8, ob-
tained from a logarithmic plot of the numerically accurate
solution.

APPENDIX C: EXACT RESULT FOR *D3Qxsp
as

In this appendix we find the integral of the asymptotic
part of the spin susceptibility nearQ35(p,p,p). Let
x as(q1Q3,0) be the approximate spin susceptibility near
Q3 obtained in Eq.~40! with q'

25qx
21qy

2 andqi5qz First
we integrate in thez direction from 2L i to L i , with
L i5p/ai , then change to polar coordinates in the plane, and
integrate on a circle of radiusL' to finally obtain

E
D

d3q

~2p!3
xsp
as~q1Q3,0!

5
1

pUsp~j0
'!2ai

F2
1

L ij i
arctanL ij i

1
1

L ij i
A11L'

2 j'
2 arctan

L ij i

A11L'
2 j'

2

1
1

2
lnS 11

L'
2 j'

2

11L i
2j i

2D G . ~C1!

This analytical result provides another route to obtain the
Néel temperature and thed52 to d53 crossover as dis-
cussed in the following Appendix.

APPENDIX D: EXTENDED SCALING HYPOTHESIS
AND UNIVERSALITY FOR THE

RENORMALIZED-CLASSICAL d52 TO d53 CROSSOVER

We first briefly recall the results of Ref. 27 on universality
of crossover scaling functions in anisotropic systems. The
discussion usually centers on anisotropy in spin space rather
than position space but the results are generally applicable.
Suppose one has a very small anisotropyg . Sufficiently far
from the transition, the critical behavior will be that of the
isotropic fixed point and should be described by theextended
scaling hypothesisfor the singular part of the free energy
density. The same extended scaling hypothesis follows for
other thermodynamic response functions. We use the symbol
' to mean ‘‘asymptotically equal to’’ and; to mean
‘‘scales as.’’ Let us concentrate on the magnetic susceptibil-
ity

x~g,t !'At2gX~Bg/tf!, ~D1!

where

t[S T2Tc~0!

Tc~0! D , ~D2!

with f the crossover exponent andTc(0) the value of the
transition temperature at zero anisotropyg50. It is clearly
the large value of the correlation length that validates the
scaling hypothesis. The scale factorsA andB in Eq. ~D1! are
nonuniversal, but the scaling function is. The value ofA for
a given model is fixed by the normalization condition
X(0)51.

Near the true transition temperature at the anisotropic
fixed point, the susceptibility should obey the usual result

x~g,t !'Ȧ~g! ṫ2ġ, ~D3!

where quantities with a dot refer to properties of the aniso-
tropic fixed point, and

t~T,g!5S T2Tc~g!

Tc~0! D1S Tc~g!2Tc~0!

Tc~0! D5 ṫ1tc~g!.

~D4!

The two expressions for the susceptibility, Eqs.~D1! and
~D3!, are consistent only if the crossover scaling function
X(Bg/tf) is singular as a function of its argument, namely,

lim
x→xc

X~x!5X0S 12
x

xc
D 2ġ

, ~D5!

where X0 is a universal amplitude whilexc is a g- and
t-independent universal number. The definition

x5Bg/@ t~g!#f ~D6!

then immediately implies that the transition temperature is at

tc~g!5~Bg/xc!
1/f. ~D7!

The generalization to thed52 to d53 crossover is not
completely trivial because ind52 the correlation length is
not a power law of temperature forO(n) models with
n.1. Fisher and Barber24 in their study of crossover in he-
lium films have considered the case where the system is three
dimensional at high temperature and two dimensional at low
temperature, opposite to the situation we consider. Further-
more, the transition temperature is finite ind52 helium
films. Kosterlitz and Santos22 did consider the case of inter-
est here, both within a one-loop renormalization group ap-
proach and in the spherical model. To cast the results of the
latter paper in the language of the extended scaling hypoth-
esis, it suffices to recall the usual hypothesis that the diver-
gence of the correlation length in the plane is at the origin of
the scaling behavior. Hence,t(T)2n can be replaced every-
where in the above equations by a function of absolute tem-
perature that scales withT in the same way as the two-
dimensional correlation length,28

j2d~T![Taexp~C/T!. ~D8!

In this expression, we have allowed for a possible algebraic
preexponential factor. For example, to one-loop order22 in
the momentum-shell method29 the preexponential factor is
a5(n22)21, while to two-loop order30 as well as in the
n→` limit, only the exponential is present,a50. In addi-
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tion to the nonuniversal quantitiesA andB defined above,
we now have an additional nonuniversal constantC in Eq.
~D8!. This is not fundamentally different from the usual case
where the relation betweent and absolute temperature also
involves a nonuniversal constant, namely,Tc(0). Theonly
difference between the itinerant case and the usualn-vector
model is thatC can be temperature dependent in the case of
nesting, as discussed in the text and in Appendix A. When
there is no nesting symmetry,C is temperature independent.
In the strong-coupling limit, one usually definesC52prS .

With the abovet(T)2n→j2d(T) hypothesis, the extended
scaling hypothesis becomes

xsp
R ~Qd,0!'Aj2d

g/nX~Bgj2d
f/n!, ~D9!

whereg5(t i /t')
2 plays the role of the anisotropy parameter

in the case we have considered in detail in the text. The
function X(x) is a universal function that we normalize to
X(0)51. With precisely the same asymptotic form as in Eq.
~D5!, simple power-series expansion in powers ofT2TN
allows one to recover the correct critical behavior near the
three-dimensional Ne´el temperature. Hence, the Ne´el tem-
perature is given byxc5B(t i /t')

2j2d
f/n so that with the

n→` result f/n5g/n52 and Eq.~D8! one recovers the
result of the main text,

C

TN
; lnS t't i

D 2, ~D10!

with C taking its appropriate temperature-dependent value in
the nesting case.

We conclude by an explicit calculation of the universal
crossover function for the staggered susceptibility in the
n→` limit. In this case,a50 in Eq.~D8!. The general form
of the susceptibility is given by Eq. ~15! with
j25j0

2(U sp/dU):

xsp
R ~Qd ,0!'

2

dU
. ~D11!

The value ofdU is in turn obtained by solving the self-
consistency condition, Eq.~39!,

s̃25Taia'
2 E d3q

~2p!3
xsp
as~q,0!, ~D12!

where s̃2 takes essentially itsd52 value with very small
corrections. We can use the result of the previous appendix,
Eq. ~C1!, for the integral. It is then convenient to rewrite the
result of the integral in terms of the following dimensionless
variables:

a[
L i
2j i

2

L'
2 j'

2 5
L i
2~j0

i !2

L'
2 ~j0

'!2
5cstS t i

t'
D 2, ~D13!

u[L ij i5L ij0
i ~Usp/dU !21/2. ~D14!

Since we assume that we are in the scaling regime, namely,
the one where the two-dimensional correlation length is very
large, (L'

2 j'
2 )@1, we can use

a!u2 ~D15!

to expand Eq.~C1! and write

pUsp~j0
'!2s̃2

Ta'
2 5 lna21/21 lnS u2

u211D
1/2

112
1

u
arctan~u!.

~D16!

If one solves the above implicit equation foru, then the
susceptibility, Eq.~D11!, follows immediately fromu2 in
Eq. ~D14! since

xsp
R ~Qd,0!5

2u2

L i
2~j0

i !2Usp
. ~D17!

Note thatu is a function of the dimensionless quantityx
defined by

x[aj2d
2 5aexp~2C/T!5aL'

2 j'
2 , ~D18!

C[
pUsp~j0

'!2s̃2

a'
2 , ~D19!

as may be seen by exponentiating the implicit equation
~D16!,

x5S u2

11u2DexpS 22
2

u
arctanuD . ~D20!

Before explicitly solving this equation in limiting cases,
let us express the universal scaling functionX in terms of
u. The last equation for the susceptibility, Eq.~D17!, may be
rewritten with the above definitions as

xsp
R ~Qd,0!5

2u2~x!

aL'
2 ~j0

'!2Usp
5Aj2d

2 X~x!5
2j'

2

~j0
'!2U sp

X~x!,

~D21!

where

X~x![
u2~x!

x
~D22!

and

A[
2

L'
2 ~j0

'!2Usp
. ~D23!

The universal crossover functionX(x) is plotted in Fig. 6.
Let us check various limiting forms analytically. This will
allow us to recover all the cases studied in the main body of
the paper. First, the two-dimensional limit is the one where
u→0. In this limit, the implicit equation~D20! reduces to
x5u2. This verifies that we have the proper normalization
X(0)51. The three-dimensional limit is the limit where
u2→`. In this limit,

xc5e2. ~D24!

Keeping the next term in the 1/u expansion, we have

lim
x→xc

X~x!5S p

e D 2S 12
x

xc
D 22

; ~D25!
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hence the universal constantX0 takes the value (p/e)2 . As
expected the susceptibility exponent ind53 is ġ52. The
Néel temperature follows from

xc5aexp~2C/TN! ~D26!

or

C

TN
5 lnS eL'j'

L ij i
D; lnS t't i

D . ~D27!

Finally, thed52 to d53 crossover temperature is given by
u5L ij i51. Obviously, the criterionL ij i51 is subjective.

We could takeL ij i to be equal to any other finite number.
For definiteness however, we continue withL ij i51. Substi-
tuting in Eq. ~D20! we havex*5 1

2exp(22p/2); hence the
crossover temperatureT* is given by

x*5aexp~2C/T* !. ~D28!

Comparing with the equation for the Ne´el temperature, Eq.
~D26!, we find that the scaling of exp(C/T* ) with the anisot-
ropy parametera is the same as that of exp(C/TN). More
specifically, we find, in agreement with the main text, Eq.
~57!, that the size of the crossover region is given by

S 12
TN
T* D5

TN
2C

ln~xc /x* !5
ln~xc /x* !

lnj2d~TN!
5 logj2d~TN!~xc /x* !.

~D29!

In other words, the size of the crossover region, calculated in
reduced temperature, decreases withTN .

To complete the relation with the general functional form,
Eq. ~D9!, postulated above, note that if

g[S t i

t'
D 2, ~D30!

thenx5Bgj2d
f/n5aj2d

2 with f/n52 implies thatB5a/g is
a number,

B[
L i
2j i

2

L'
2 j'

2 S t't i
D 2, ~D31!

which is independent ofg because of the scalingL i
2j i

2/
L'
2 j'

2;(t i /t')
2 that follows from Appendix A, Eq.~A15!.

The universal crossover scaling function beyondn5`
where the exponentsf/nandg/n differ has yet to be inves-
tigated.
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