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Abstract. — A new approach to the single-band Hubbard model is described in the general
context of many-body theories. It is based on enforcing conservation laws, the Pauli principle and
a number of crucial sum-rules. More specifically, spin and charge susceptibilities are expressed,
in a conserving approximation, as a function of two irreducible vertices whose values are found
by imposing the local Pauli principle 〈n2

↑〉 = 〈n↑〉 as well as the local-moment sum-rule and
consistency with the equations of motion in a local-field approximation. The Mermin-Wagner
theorem in two dimensions is automatically satisfied. The effect of collective modes on single-
particle properties is then obtained by a paramagnon-like formula that is consistent with the
two-particle properties in the sense that the potential energy obtained from Tr ΣG is identical
to that obtained using the fluctuation-dissipation theorem for susceptibilities. Since there is
no Migdal theorem controlling the effect of spin and charge fluctuations on the self-energy,
the required vertex corrections are included. It is shown that the theory is in quantitative
agreement with Monte Carlo simulations for both single-particle and two-particle properties. The
theory predicts a magnetic phase diagram where magnetic order persists away from half-filling
but where ferromagnetism is completely suppressed. Both quantum-critical and renormalized-
classical behavior can occur in certain parameter ranges. It is shown that in the renormalized
classical regime, spin fluctuations lead to precursors of antiferromagnetic bands (shadow bands)
and to the destruction of the Fermi-liquid quasiparticles in a wide temperature range above
the zero-temperature phase transition. The upper critical dimension for this phenomenon is
three. The analogous phenomenon of pairing pseudogap can occur in the attractive model in
two dimensions when the pairing fluctuations become critical. Simple analytical expressions
for the self-energy are derived in both the magnetic and pairing pseudogap regimes. Other
approaches, such as paramagnon, self-consistent fluctuation exchange approximation (FLEX),
and pseudo-potential parquet approaches are critically compared. In particular, it is argued that
the failure of the FLEX approximation to reproduce the pseudogap and the precursors AFM
bands in the weak coupling regime and the Hubbard bands in the strong coupling regime is due
to inconsistent treatment of vertex corrections in the expression for the self-energy. Treating the
spin fluctuations as if there was a Migdal’s theorem can lead not only to quantitatively wrong
results but also to qualitatively wrong predictions, in particular with regard to the single-particle
pseudogap.
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1. Introduction

Understanding all the consequences of the interplay between band structure effects and electron-
electron interactions remains one of the present-day goals of theoretical solid-state Physics. One
of the simplest model that contains the essence of this problem is the Hubbard model. In the
more than thirty years [1, 2] since this model was formulated, much progress has been accom-
plished. In one dimension [3, 4], various techniques such as diagrammatic resummations [5],
bosonization [6], renormalization group [7, 8] and conformal approaches [9, 10] have lead to a
very detailed understanding of correlation functions, from weak to strong coupling. Similarly,
in infinite dimensions a dynamical mean-field theory [11] leads to an essentially exact solution
of the model, although many results must be obtained by numerically solving self-consistent
integral equations. Detailed comparisons with experimental results on transition-metal oxides
have shown that three-dimensional materials can be well described by the infinite-dimensional
self-consistent mean-field approach [11]. Other methods, such as slave-boson [12] or slave-
fermion [13] approaches, have also allowed one to gain insights into the Hubbard model through
various mean-field theories corrected for fluctuations. In this context however, the mean-field
theories are not based on a variational principle. Instead, they are generally based on expan-
sions in the inverse of a degeneracy parameter [14], such as the number of fermion flavors N ,
where N is taken to be large despite the fact that the physical limit corresponds to a small
value of this parameter, say N = 2. Hence these theories must be used in conjunction with
other approaches to estimate their limits of validity [15]. Expansions around solvable limits
have also been explored [16]. Finally, numerical solutions [17], with proper account of finite-size
effects, can often provide a way to test the range of validity of approximation methods inde-
pendently of experiments on materials that are generally described by much more complicated
Hamiltonians.

Despite all this progress, we are still lacking reliable theoretical methods that work in ar-
bitrary space dimension. In two dimensions in particular, it is believed that the Hubbard
model may hold the key to understanding normal state properties of high-temperature super-
conductors. But even the simpler goal of understanding the magnetic phase diagram of the
Hubbard model in two dimensions is a challenge. Traditional mean-field techniques, or even
slave-boson mean-field approaches, for studying magnetic instabilities of interacting electrons
fail in two dimensions. The Random Phase Approximation (RPA) for example does not sat-
isfy the Pauli principle, and furthermore it predicts finite temperature antiferromagnetic or
Spin Density Wave (SDW) transitions while this is forbidden by the Mermin-Wagner theorem.
Even though one can study universal critical behavior using various forms of renormalization
group treatments [18–22] or through the self-consistent-renormalized approach of Moriya [23]
which all satisfy the Mermin-Wagner theorem in two dimensions, cutoff-dependent scales are
left undetermined by these approaches. This means that the range of interactions or fillings
for which a given type of ground-state magnetic order may appear is left undetermined.

Amongst the recently developed theoretical methods for understanding both collective and
single-particle properties of the Hubbard model, one should note the fluctuation exchange
approximation [24] (FLEX) and the pseudo-potential parquet approach [25]. The first one,
FLEX, is based on the idea of conserving approximations proposed by Baym and Kadanoff
[26,27]. This approach starts with a set of skeleton diagrams for the Luttinger-Ward functional
[28] to generate a self-energy that is computed self-consistently. The choice of initial diagrams
however is arbitrary and left to physical intuition. In the pseudo-potential parquet approach,
one parameterizes response functions in all channels, and then one iterates crossing-symmetric
many-body integral equations. While the latter approach partially satisfies the Pauli principle,
it violates conservation laws. The opposite is true for FLEX.
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In this paper, we present the formal aspects of a new approach that we have recently de-
veloped for the Hubbard model [29, 30]. The approach is based on enforcing sum rules and
conservation laws, rather than on diagrammatic perturbative methods that are not valid for
interaction U larger than hopping t. We first start from a Luttinger-Ward functional that
is parameterized by two irreducible vertices Usp and Uch that are local in space-time. This
generates RPA-like equations for spin and charge fluctuations that are conserving. The local-
moment sum rule, local charge sum rule, and the constraint imposed by the Pauli principle,
〈n2
↑〉 = 〈n↑〉 then allow us to find the vertices as a function of double occupancy 〈n↑n↓〉 (see

Eqs. (37, 38)). Since 〈n↑n↓〉 is a local quantity it depends very little on the size of the system
and, in principle, it could be obtained reliably using numerical methods, such as for example
Monte Carlo simulations. Here, however, we adopt another approach and find 〈n↑n↓〉 self-
consistently [29] without any input from outside the present theory. This is done by using an
ansatz equation (40) for the double-occupancy 〈n↑n↓〉 that has been inspired by ideas from the
local field approach of Singwi et al. [31]. Once we have the spin and charge fluctuations, the
next step is to use them to compute a new approximation, equation (46), for the single-particle
self-energy. This approach to the calculation of the effect of collective modes on single-particle
properties [30] is similar in spirit to paramagnon theories [32]. Contrary to these approaches
however, we do include vertex corrections in such a way that, if Σ(1) is our new approxima-
tion for the self-energy while G(0) is the initial Green’s function used in the calculation of the
collective modes, and 〈n↑n↓〉 is the value obtained from spin and charge susceptibilities, then
1
2Tr

[
Σ(1)G(0)

]
= U 〈n↑n↓〉 is satisfied exactly. The extent to which 1

2Tr
[
Σ(1)G(1)

]
(computed

with G(1) instead of G(0)) differs from U 〈n↑n↓〉 can then be used both as an internal accuracy
check and as a way to improve the vertex corrections.

If one is interested only in two-particle properties, namely spin and charge fluctuations,
then this approach has the simple physical appeal of RPA but it satisfies key constraints that
are always violated by RPA, namely the Mermin-Wagner theorem and the Pauli principle.
To contrast it with usual RPA, that has a self-consistency only at the single-particle level,
we call it the Two-Particle Self-Consistent approach (TPSC) [29, 30, 33]. The TPSC gives a
quantitative description of the Hubbard model not only far from phase transitions, but also
upon entering the critical regime. Indeed we have shown quantitative agreement with Monte
Carlo simulations of the nearest-neighbor [29] and next-nearest neighbor [34] Hubbard model
in two dimensions. Quantitative agreement is also obtained as one enters the narrow critical
regime accessible in Monte Carlo simulations. We also have shown [33] in full generality that
the TPSC approach gives the n → ∞ limit of the O (n) model, while n = 3 is the physically
correct (Heisenberg) limit. In two dimensions, we then recover both quantum-critical [19] and
renormalized classical [18] regimes to leading order in 1/n. Since there is no arbitrariness in
cutoff, given a microscopic Hubbard model no parameter is left undetermined. This allows us
to go with the same theory from the non-critical to the beginning of the critical regime, thus
providing quantitative estimates for the magnetic phase diagram of the Hubbard model, not
only in two dimensions but also in higher dimensions [33].

The main limitation of the approach presented in this paper is that it is valid only from
weak to intermediate coupling. The strong-coupling case cannot be treated with frequency-
independent irreducible vertices, as will become clear later. However, a suitable ansatz for
these irreducible vertices in a Luttinger-Ward functional might allow us to apply our general
scheme to this limit as well.

Our approach predicts [30] that in two dimensions, Fermi liquid quasiparticles disappear
in the renormalized classical regime ξAFM ∝ exp(const/T ), which always precedes the zero-
temperature phase transition in two-dimensions. In this regime the antiferromagnetic
correlation length becomes larger than the single-particle thermal de Broglie wave length
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ξth(= vF/T ), leading to the destruction of Fermi liquid quasiparticles with a concomitant
appearance of precursors of antiferromagnetic bands (“shadow bands”) with no quasi-particle
peak between them. We stress the crucial role of the classical thermal spin fluctuations and low
dimensionality for the existence of this effect and contrast our results with the earlier results
of Kampf and Schrieffer [35] who used a susceptibility separable in momentum and frequency
χsp = f(q)g(ω). The latter form of χsp = f(q)g(ω) leads to an artifact that dispersive precur-
sors of antiferromagnetic bands can exist at T = 0 (for details see [36]). We also contrast our
results with those obtained in the fluctuation exchange approximation (FLEX), which includes
self-consistency in the single particle propagators but neglects the corresponding vertex cor-
rections. The latter approach predicts only the so-called “shadow feature” [36,37] which is an
enhancement in the incoherent background of the spectral function due to antiferromagnetic
fluctuations. However, it does not predict [38] the existence of “shadow bands” in the renor-
malized classical regime. These bands occur when the condition ω − εk − Σσ(k, ω) + µ = 0 is
satisfied. FLEX also predicts no pseudogap in the spectral function A(kF, ω) at half-filling [38].
By analyzing temperature and size dependence of the Monte Carlo data and comparing them
with the theoretical calculations, we argue that the Monte Carlo data supports our conclusion
that the precursors of antiferromagnetic bands and the pseudogap do appear in the renormal-
ized classical regime. We believe that the reason for which the FLEX approximation fails to
reproduce this effect is essentially the same reason for which it fails to reproduce Hubbard
bands in the strong coupling limit. More specifically, the failure is due to an inconsistent
treatment of vertex corrections in the self-energy ansatz. Contrary to the electron-phonon
case, these vertex corrections have a strong tendency to cancel the effects of using dressed
propagators in the expression for the self-energy.

Recently, there have been very exciting developments in photoemission studies of the High-Tc

materials [39,40] that show the opening of the pseudogap in single particle spectra above the
superconducting phase transition. At present, there is an intense debate about the physical
origin of this phenomena and, in particular, whether it is of magnetic or of pairing origin.
From the theoretical point of view there are a lot of formal similarities in the description
of antiferromagnetism in repulsive models and superconductivity in attractive models. In
Section 5 we use this formal analogy to obtain a simple analytical expressions for the self-energy
in the regime dominated by critical pairing fluctuations. We then point out on the similarities
and differences in the spectral function in the case of magnetic and pairing pseudogaps.

Our approach has been described in simple physical terms in references [29, 30]. The plan
of the present paper is as follows. After recalling the model and the notation, we present our
theory in Section 3. There we point out which exact requirements of many-body theory are
satisfied, and which are violated. Before Section 3, the reader is urged to read Appendix A that
contains a summary of sum rules, conservation laws and other exact constraints. Although
this discussion contains many original results, it is not in the main text since the more expert
reader can refer to the appendix as need be. We also illustrate in this appendix how an
inconsistent treatment of the self-energy and vertex corrections can lead to the violation of a
number of sum rules and inhibit the appearance of the Hubbard bands, a subject also treated
in Section 6. Section 4 compares the results of our approach and of other approaches to Monte
Carlo simulations. We study in more details in Section 5 the renormalized classical regime at
half-filling where, in two dimensions, Fermi liquid quasiparticles are destroyed and replaced
by precursors of antiferromagnetic bands well before the T = 0 phase transition. We also
consider in this section the analogous phenomenon of pairing pseudogap which can appear in
two dimensions when the pairing fluctuations become critical. The following section (Sect. 6)
explains other attempts to obtain precursors of antiferromagnetic bands and points out why
approaches such as FLEX fail to see the effect. We conclude in Section 7 with a discussion
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of the domain of validity of our approach and in Section 8 with a critical comparison with
FLEX and pseudo-potential parquet approaches, listing the weaknesses and strengths of our
approach compared with these. A more systematic description and critique of various many-
body approaches, as well as proofs of some of our results, appear in appendices.

2. Model and Definitions

We first present the model and various definitions. The Hubbard model is given by the Hamil-
tonian

H = −
∑
<ij>σ

ti,j

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓. (1)

In this expression, the operator ciσ destroys an electron of spin σ at site i. Its adjoint c†iσ creates

an electron and the number operator is defined by niσ = c†iσciσ. The symmetric hopping matrix
ti,j determines the band structure, which here can be arbitrary. Double occupation of a site
costs an energy U due to the screened Coulomb interaction. We work in units where kB = 1,
h̄ = 1 and the lattice spacing is also unity, a = 1 . As an example that occurs later, the
dispersion relation in the d -dimensional nearest-neighbor model is given by

εk = −2t
d∑
i=1

(cos ki) . (2)

2.1. Single-Particle Propagators, Spectral Weight and Self-Energy. — We will
use a “four”-vector notation k ≡ (k, ikn) for momentum-frequency space, and 1 ≡ (r1, τ1) for
position-imaginary time. For example, the definition of the single-particle Green’s function
can be written as

Gσ (1, 2) ≡ −
〈
Tτc1σ (τ1) c†2σ (τ2)

〉
≡ −

〈
Tτcσ (1) c†σ(2)

〉
(3)

where the brackets 〈〉 represent a thermal average in the grand canonical ensemble, Tτ is the
time-ordering operator, and τ is imaginary time. In zero external field and in the absence
of the symmetry breaking Gσ(1, 2) = Gσ(1−2) and the Fourier-Matsubara transforms of the
Green’s function are

Gσ (k) =
∑
r1

e−ik·r1

∫ β

0

dτ eiknτ1Gσ (r1, τ1) ≡

∫
d(1)e−ik(1)Gσ(1) (4)

Gσ(1) =
T

N

∑
k

eik(1)Gσ(k). (5)

As usual, experimentally observable retarded quantities are obtained from the Matsubara ones
by analytical continuation ikn → ω + iη. In particular, the single-particle spectral weight
A(k, ω) is related to the single-particle propagator by

Gσ(k, ikn) =

∫
dω

2π

Aσ(k, ω)

ikn − ω
(6)

Aσ(k, ω) = −2ImGR
σ (k, ω). (7)

The self-energy obeys Dyson’s equation, leading to

Gσ(k, ikn) =
1

ikn − (εk − µ)− Σσ(k, ikn)
· (8)
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It is convenient to use the following notation for real and imaginary parts of the analytically
continued retarded self-energy

ΣR
σ (k, ikn → ω + iη) = Σ′σ(k, ω) + iΣ′′σ(k, ω). (9)

Causality and positivity of the spectral weight imply that

Σ′′σ(k, ω) < 0. (10)

Finally, let us point out that for nearest-neighbor hopping, the Hamiltonian is particle-hole
symmetric at half-filling, (ckσ → c†k+Qσ; c†kσ → ck+Qσ) with Q = (π, π) , implying that
µ = U/2 and that,

Gσ (k, τ) = −Gσ (k + Q,−τ) (11)[
Σ (k, ikn)−

U

2

]
= −

[
Σ (k + Q,−ikn)−

U

2

]
· (12)

2.2. Spin and Charge Correlation Functions. — We shall be primarily concerned with
spin and charge fluctuations, which are the most important collective modes in the repulsive
Hubbard model. Let the charge and z components of the spin operators at site i be given
respectively by

ρi(τ) ≡ ni↑(τ) + ni↓(τ) (13)

Szi ≡ ni↑(τ) − ni↓(τ). (14)

The time evolution here is again that of the Heisenberg representation in imaginary time.
The charge and spin susceptibilities in imaginary time are the responses to perturbations

applied in imaginary-time. For example, the linear response of the spin to an external field
that couples linearly to the z component

e−βH → e−βHTτe
∫

dτSzi (τ
′)φSi (τ ′) (15)

is given by

χsp(ri − rj , τi − τj) =
δ 〈Sj(τj)〉

δφSi (τi)
=
〈
TτS

z
i (τi)S

z
j (τj)

〉
· (16)

In an analogous manner, for charge we have

χch(ri − rj , τi − τj) =
δ 〈ρj(τj)〉

δφρi (τi)
= 〈Tτρi(τi)ρj(τj)〉 − n

2. (17)

Here n ≡ 〈ρi〉 is the filling so that the disconnected piece is denoted n2. It is well known
that when analytically continued, these susceptibilities give physical retarded and advanced
response functions. In fact, the above two expressions are the imaginary-time version of the
fluctuation-dissipation theorem.

The expansion of the above functions in Matsubara frequencies uses even frequencies. Defin-
ing the subscript ch, sp to mean either charge or spin, we have

χch,sp(q, iqn) =

∫
dω′

π

χ′′ch,sp(q, ω′)

ω′ − iqn
(18)

χ′′ch(q, t) =
1

2
〈[ρq(t), ρ−q(0)]〉 ; χ′′sp(q, t) =

1

2

〈[
Szq(t), Sz−q(0)

]〉
· (19)
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The fact that χ′′ch,sp(q, ω′) is real and odd in frequency in turn means that χch,sp(q, iqn) is real

χch,sp(q, iqn) =

∫
dω′

π

ω′χ′′ch,sp(q, ω′)

(ω′)
2

+ (qn)
2 (20)

a convenient feature for numerical calculations. The high-frequency expansion has 1/q2
n as

a leading term so that there is no discontinuity in χch,sp (q, τ) as τ → 0, contrary to the
single-particle case.

3. Formal Derivation

To understand how to satisfy as well as possible the requirements imposed on many-body
theory by exact results, such as those in Appendix A, it is necessary to start from a general non-
perturbative formulation of the many-body problem. We thus first present a general approach
to many-body theory that is set in the framework introduced by Martin and Schwinger [42],
Luttinger and Ward [28] and Kadanoff and Baym [26, 27]. This allows one to see clearly the
structure of the general theory expressed in terms of the one-particle irreducible self-energy
and of the particle-hole irreducible vertices. These quantities represent projected propagators
and there is a great advantage in doing approximations for these quantities rather than directly
on propagators.

Our own approximation to the Hubbard model is then described in the subsection that
follows the formalism. In our approach, the irreducible quantities are determined from various
consistency requirements. The reader who is interested primarily in the results rather than in
formal aspects of the theory can skip the next subsection and refer back later as needed.

3.1. General Formalism. — Following Kadanoff and Baym [27], we introduce the gener-
ating function for the Green’s function

lnZ [φ] = ln
〈
Tτe−c

†

σ
(1)cσ(2)φσ(1,2)

〉
(21)

where, as above, a bar over a number means summation over position and imaginary time
and, similarly, a bar over a spin index means a sum over that spin index. The quantity Z is
a functional of φσ , the position and imaginary-time dependent field. Z reduces to the usual
partition function when the field φσ vanishes. The one-particle Green’s function in the presence
of this external field is given by

Gσ(1, 2; [φ]) = −
δ lnZ [φ]

δφσ(2, 1)
(22)

and, as shown by Kadanoff and Baym, the inverse Green’s function is related to the self-energy
through

G−1 = G−1
0 − φ− Σ. (23)

The self-energy in this expression is a functional of φ.
Performing a Legendre transform on the generating functional ln Z [φ] in equation (21) with

the help of the last two equations, one can find a functional Φ [G] of G that acts as a generating
function for the self-energy

Σσ(1, 2; [G]) =
δΦ [G]

δGσ(2, 1)
· (24)

The quantity Φ [G] is the Luttinger-Ward functional [28]. Formally, it is expressed as the sum of
all connected skeleton diagrams, with appropriate counting factors. Conserving approximations
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Fig. 1. — The first line is a diagrammatic representation of the Bethe-Salpeter equation (26) for the
three point susceptibility and the second line is the corresponding equation (27) for the self-energy. In
the Hubbard model, the Fock contribution is absent, but in general it should be there. Solid lines are
Green’s functions and dashed lines represent the contact interaction U . The triangle is the three point
vertex, while the three-point susceptibility χ(1, 3; 2) is the triangle along with the attached Green’s
function. The usual two-point susceptibility is obtained by identifying points 1 and 3 in the Bethe-
Salpeter equation. The rectangular box is the irreducible four-point vertex in the selected particle-hole
channel.

start from a subset of all possible connected diagrams for Φ [G] to generate both the self-energy
and the irreducible vertices entering the integral equation obeyed by response functions. These
response functions are then guaranteed to satisfy the conservation laws. They obey integral
equations containing as irreducible vertices

Γir
σσ′(1, 2; 3, 4) ≡

δΣσ(1, 2; [G])

δGσ′(3, 4)
=

δ2Φ [G]

δGσ(2, 1)δGσ′(3, 4)
= Γir

σ′σ(4, 3; 2, 1). (25)

A complete and exact picture of one- and two-particle properties is obtained then as fol-
lows. First, the generalized susceptibilities χσσ′(1, 3; 2) ≡ −δGσ(1, 3)/δφσ′ (2

+, 2) are cal-
culated by taking the functional derivative of GG−1 and using the Dyson equation (23) to
compute δG−1/δφ. One obtains [27]

χσσ′(1, 3; 2) = −Gσ(1, 2)δσ,σ′Gσ(2, 3) +Gσ(1, 2)Γir
σσ(2, 3; 4, 5)χσσ′(4, 5; 2)Gσ(3, 3) (26)

where one recognizes the Bethe-Salpeter equation for the three-point susceptibility in the
particle-hole channel. The second equation that we need is automatically satisfied in an exact
theory. It relates the self-energy to the response function just discussed through the equation

Σσ(1, 2) = Un−σδ(1− 2) + UGσ(1, 2)Γir
σσ′(2, 2; 4, 5)χσ′−σ(4, 5; 1) (27)

which is proven in Appendix B.

The diagrammatic representation of these two equations (26, 27) appearing in Figure 1 may
make them look more familiar. Despite this diagrammatic representation, we stress that this
is only for illustrative purposes. The rest of our discussion will not be diagrammatic.
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Because of the spin-rotational symmetry the above equations (26, 27) can be decoupled into
symmetric (charge) and antisymmetric (spin) parts, by introducing spin and charge irreducible
vertices and generalized susceptibilities:

Γch ≡ Γir
↑↓ + Γir

↑↑ ; Γsp ≡ Γir
↑↓ − Γir

↑↑ (28)

χch ≡ 2(χ↑↓ + χ↑↑) ; χsp ≡ 2(χ↑↑ − χ↑↓). (29)

The usual two-point susceptibilities are obtained from the generalized ones as
χsp,ch(1, 2) = χsp,ch(1, 1+; 2). The equation (26) for the generalized spin susceptibility leads to

χsp(1, 3; 2) = −2G(1, 2)G(2, 3)− Γsp(2, 3; 4, 5)G(1, 2)G(3, 3)χsp(4, 5; 2) (30)

and similarly for charge, but with the plus sign in front of the second term.
Finally, one can write the exact equation (27) for the self-energy in terms of the response

functions as

Σσ(1, 2) = Un−σδ(1− 2) +
U

4
[Γsp(2, 2; 4, 5)χsp(4, 5; 1) + Γch(2, 2; 4, 5)χch(4, 5; 1)]Gσ(1, 2). (31)

Our two key equations are thus those for the three-point susceptibilities, equation (30), and
for the self-energy, equation (31). It is clear from the derivation in Appendix B that these
equations are intimately related.

3.2. Approximations through Local Irreducible Vertices

3.2.1. Conserving Approximation for the Collective Modes. — In formulating approximation
methods for the many-body problem, it is preferable to confine our ignorance to high-order
correlation functions whose detailed momentum and frequency dependence is not singular and
whose influence on the low energy Physics comes only through averages over momentum and
frequency. We do this here by parameterizing the Luttinger-Ward functional by two constants
Γir
↑↓ and Γir

↑↑. They play the role of particle-hole irreducible vertices that are eventually deter-
mined by enforcing sum rules and a self-consistency requirement at the two-particle level. In
the present context, this functional can be also considered as the interacting part of a Landau
functional. The ansatz is

Φ [G] =
1

2
Gσ

(
1, 1

+
)

Γir
σσGσ

(
1, 1

+
)

+
1

2
Gσ

(
1, 1

+
)

Γir
σ−σG−σ

(
1, 1

+
)
. (32)

As in every conserving approximation, the self-energy and irreducible vertices are obtained from
functional derivatives as in equations (24, 25) and then the collective modes are computed from
the Bethe-Salpeter equation (30). The above Luttinger-Ward functional gives a momentum
and frequency independent self-energy [43], that can be absorbed in a chemical potential shift.
From the Luttinger-Ward functional, one also obtains two local particle-hole irreducible vertices
Γir
σσ and Γir

σ−σ

Γir
σσ(2, 3; 4, 5) ≡

δΣσ(2, 3)

δGσ′(4, 5)
= δ(2− 5)δ(3− 4)δ(4+ − 5)Γir

σσ′ · (33)

We denote the corresponding local spin and charge irreducible vertices as

Usp ≡ Γir
σ−σ − Γir

σσ; Uch ≡ Γir
σ−σ + Γir

σσ · (34)

Notice now that there are only two equal-time, equal-point (i.e. local) two-particle correlation
functions in this problem, namely 〈n↑n↓〉 and 〈n2

↑〉 = 〈n2
↓〉 = 〈n↓〉 = n/2. The last one is



1318 JOURNAL DE PHYSIQUE I N◦11

completely determined by the Pauli principle and by the known filling factor, while U〈n↑n↓〉
is the expectation value of the interaction term in the Hamiltonian. Only one of these two
correlators, namely U〈n↑n↓〉, is unknown. Assume for the moment that it is known. Then,
we can use the two sum rules (Eqs. (A.15, A.14)) that follow from the fluctuation-dissipation
theorem and from the Pauli principle to determine the two trial irreducible vertices from the
known value of this one key local correlation functions. In the present notation, these two sum
rules are

χch

(
1, 1+

)
=

T

N

∑
q

∑
iqn

χch(q, iqn) = 〈n↑〉+ 〈n↓〉+ 2 〈n↑n↓〉 − n
2 (35)

χsp

(
1, 1+

)
=

T

N

∑
q

∑
iqn

χsp(q, iqn) = 〈n↑〉+ 〈n↓〉 − 2 〈n↑n↓〉 (36)

and since the spin and charge susceptibilities entering these equations are obtained by solving
the Bethe-Salpeter equation (30) with the constant irreducible vertices equations (33, 34) we
have one equation for each of the irreducible vertices

n+ 2〈n↑n↓〉 − n
2 =

T

N

∑
q

χ0(q)

1 + 1
2Uchχ0(q)

, (37)

n− 2〈n↑n↓〉 =
T

N

∑
q̃

χ0(q)

1− 1
2Uspχ0(q)

· (38)

We used our usual short-hand notation for wave vector and Matsubara frequency q = (q, iqn).
Since the self-energy corresponding to our trial Luttinger-Ward functional is constant, the
irreducible susceptibilities take their non-interacting value χ0(q).

The local Pauli principle 〈n2
↓〉 = 〈n↓〉 leads to the following important sum-rule

T

N

∑
q

∑
iqn

[χsp(q, iqn) + χch(q, iqn)] = 2n− n2, (39)

which can be obtained by adding equations (38, 37). This sum-rule implies that effective
interactions for spin Usp and charge Uch channels must be different from one another and hence
that ordinary RPA is inconsistent with the Pauli principle (for details see Appendix A.3).

Equations (37, 38) determine Usp and Uch as a function of double occupancy 〈n↑n↓〉. Since
double occupancy is a local quantity it depends little on the size of the system. It could be
obtained reliably from a number of approaches, such as for example Monte Carlo simulations.
However, there is a way to obtain double-occupancy self-consistently [29] without input from
outside of the present theory. It suffices to add to the above set of equations the relation

Usp = g↑↓(0)U ; g↑↓(0) ≡
〈n↑n↓〉

〈n↓〉〈n↑〉
· (40)

Equations (38, 40) then define a set of self-consistent equations for Usp that involve only
two-particle quantities. This ansatz is motivated by a similar approximation suggested by
Singwi et al. [31] in the electron gas, which proved to be quite successful in that case. On
a lattice we will use it for n ≤ 1. The case n > 1 can be mapped on the latter case using
particle-hole transformation. In the context of the Hubbard model with on-site repulsion, the
physical meaning of equation (40) is that the effective interaction in the most singular spin
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channel, is reduced by the probability of having two electrons with opposite spins on the same
site. Consequently, the ansatz reproduces the Kanamori-Brueckner screening that inhibits
ferromagnetism in the weak to intermediate coupling regime (see also below). We want to
stress, however, that this ansatz is not a rigorous result like sum rules described above. The
plausible derivation of this ansatz can be found in references [29,31] as well as, in the present
notation, in Appendix C.

We have called this approach Two-Particle Self-Consistent to contrast it with other conserv-
ing approximations like Hartree-Fock or Fluctuation Exchange Approximation (FLEX) [24]
that are self-consistent at the one-particle level, but not at the two-particle level. This ap-
proach [29] to the calculation of spin and charge fluctuations satisfies the Pauli principle
〈n2
σ〉 = 〈nσ〉 = n/2 by construction, and it also satisfies the Mermin-Wagner theorem in

two dimensions.
To demonstrate that this theorem is satisfied, it suffices to show that 〈n↑n↓〉=g↑↓ (0) 〈n↑〉〈n↓〉

does not grow indefinitely. (This guarantees that the constant C̃ appearing in Eq. (A.21) is
finite.) To see how this occurs, write the self-consistency condition (Eq. (38)) in the form

n− 2〈n↑n↓〉 =
T

N

∑
q̃

χ0(q)

1− 1
2U

〈n↑n↓〉
〈n↑〉〈n↓〉

χ0(q)
· (41)

Consider increasing 〈n↑n↓〉 on the right-hand side of this equation. This leads to a decrease of
the same quantity on the left-hand side. There is thus negative feedback in this equation that
will make the self-consistent solution finite. A more direct proof by contradiction has been
given in reference [29]: suppose that there is a phase transition, in other words suppose that
〈n↑〉 〈n↓〉 = 1

2U〈n↑n↓〉χ0(q). Then the zero-Matsubara frequency contribution to the right-
hand side of equation (41) becomes infinite and positive in two dimensions as one can see
from phase-space arguments (See Eq. (A.21)). This implies that 〈n↑n↓〉 on the left-hand
side must become negative and infinite, but that contradicts the starting hypothesis since
〈n↑〉 〈n↓〉 = 1

2U〈n↑n↓〉χ0(q) means that 〈n↑n↓〉 is positive.
Although there is no finite-temperature phase transition, our theory shows that sufficiently

close to half-filling (see Sect. 4.3) there is a crossover temperature TX below which the system
enters the so-called renormalized classical regime, where antiferromagnetic correlations grow
exponentially. This will be discussed in detail in Section 5.1.1.

Kanamori-Brueckner screening is also included as we already mentioned above. To see how
the screening occurs, consider a case away from half-filling, where one is far from a phase
transition. In this case, the denominator in the self-consistency condition can be expanded to
linear order in U and one obtains

g↑↓ (0) =
〈n↑n↓〉

〈n↑〉 〈n↓〉
=

1

1 + ΛU
(42)

where

Λ =
2

n2

T

N

∑
q

χ0(q)2. (43)

Clearly, quantum fluctuations contribute to the sum appearing above and hence to the renor-
malization of Usp = g↑↓ (0)U. The value of Λ is found to be near 0.2 as in explicit numerical
calculations of the maximally crossed Kanamori-Brueckner diagrams [44]. At large U , the
value of Usp = g↑↓ (0)U ∼ 1/Λ saturates to a value of the order of the inverse bandwidth
which corresponds to the energy cost for creating a node in the two-body wave function, in
agreement with the Physics described by Kanamori [2].
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Fig. 2. — Dependence on U of the charge and spin effective interactions (irreducible vertices). The
temperature is chosen so that for all U , it is above the crossover temperature. In this case, temperature
dependence is not significant. The filling is n = 1.

Fig. 3. — Crossover temperature at half-filling as function of U compared with the mean-field tran-
sition temperature.

To illustrate the dependence of Usp, Uch on bare U we give in Figure 2 a plot of these
quantities at half-filling where the correlation effects are strongest. The temperature for this
plot is chosen to be above the crossover temperature TX to the renormalized classical regime,
in which case the dependence of Usp and Uch on temperature is not significant. As one can
see, Usp rapidly saturates to a fraction of the bandwidth, while Uch rapidly increases with U ,
reflecting the tendency to the Mott transition. We have also shown previously in Figure 2
of reference [29] that Usp depends only weakly on filling. Since Usp saturates as a function
of U due to Kanamori-Brueckner screening, the crossover temperature TX also saturates as a
function of U . This is illustrated in Figure 3 along with the mean-field transition temperature
that, by contrast, increases rapidly with U.

Quantitative agreement with Monte Carlo simulations on the nearest-neighbor [29] and next-
nearest-neighbor models [34] is obtained [29] for all fillings and temperatures in the weak to
intermediate coupling regime U < 8t. This is discussed further below in Section 4. We have also
shown that the above approach reproduces both quantum-critical and renormalized-classical
regimes in two dimensions to leading order in the 1/n expansion (spherical model) [33].

As judged by comparisons with Monte Carlo simulations [45], the particle-particle channel
in the repulsive two-dimensional Hubbard model is relatively well described by more standard
perturbative approaches. Although our approach can be extended to this channel as well,
we do not consider it directly in this paper. It manifests itself only indirectly through the
renormalization of Usp and Uch that it produces.

3.2.2. Single-Particle Properties. — As in any implementation of conserving approximations,
the initial guess for the self-energy, Σ(0), obtained from the trial Luttinger-Ward functional
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is inconsistent with the exact self-energy formula (Eq. (31)). The latter formula takes into
account the feedback of the spin and charge collective modes actually calculated from the
conserving approximation. In our approach, we use this self-energy formula (Eq. (31)) in an
iterative manner to improve on our initial guess of the self-energy. The resulting formula for an
improved self-energy Σ(1) has the simple physical interpretation of paramagnon theories [46].

As another way of Physically explaining this point of view, consider the following: the bosonic
collective modes are weakly dependent on the precise form of the single-particle excitations, as
long as they have a quasiparticle structure. In other words, zero-sound or paramagnons exist,
whether the Bethe-Salpeter equation is solved with non-interacting particles or with quasipar-
ticles. The details of the single-particle self-energy by contrast can be strongly influenced by
scattering from collective modes because these bosonic modes are low-lying excitations. Hence,
we first compute the two-particle propagators with Hartree-Fock single-particle Green’s func-
tions, and then we improve on the self-energy by including the effect of collective modes on
single-particle properties. The fact that collective modes can be calculated first and self-energy
afterwards is reminiscent of renormalization group approaches [8, 47], where collective modes
are obtained at one-loop order while the non-trivial self-energy comes out only at two-loop
order.

The derivation of the general self-energy formula (Eq. (31)) given in Appendix B shows
that it basically comes from the definition of the self-energy and from the equation for the
collective modes (Eq. (30)). This also stands out clearly from the diagrammatic representation
in Figure 1. By construction, these two equations (Eqs. (30, 31)) satisfy the consistency
requirement 1

2Tr ΣG = U 〈n↑n↓〉 (see Appendix B), which in momentum and frequency space
can be written as

lim
τ→0−

T

N

∑
k

Σσ(k)Gσ(k)e−iknτ = U 〈n↑n↓〉 · (44)

The importance of the latter sum rule, or consistency requirement, for approximate theories
should be clear from the appearance of the correlation function 〈n↑n↓〉 that played such an im-
portant role in determining the irreducible vertices and in obtaining the collective modes. Using
the fluctuation dissipation theorem (Eqs. (36, 35)) this sum-rule can be written in form that
explicitly shows the relation between the self-energy and the spin and charge susceptibilities

T

N

∑
k

[Σσ(k)− Un−σ]Gσ(k) =
U

4

T

N

∑
q

[χch(q)− χsp(q)] . (45)

To keep as much as possible of this consistency, we use on the right-hand side of the self-energy
expression (Eq. (31)) the same irreducible vertices and Green’s functions as those that appear
in the collective-mode calculation (Eq. (30)). Let us call G(0) the initial Green’s function
corresponding to the initial Luttinger-Ward self-energy Σ(0). Our new approximation for the
self-energy Σ(1) then takes the form

Σ(1)
σ (k) = Un−σ +

U

4

T

N

∑
q

[Uspχsp(q) + Uchχch(q)]G(0)
σ (k + q). (46)

Note that Σ
(1)
σ (k) satisfies particle-hole symmetry (Eq. (12)) where appropriate. This self-

energy expression (Eq. (46)) is physically appealing since, as expected from general skeleton
diagrams, one of the vertices is the bare one U , while the other vertex is dressed and given
by Usp or Uch depending on the type of fluctuation being exchanged. It is because Migdal’s
theorem does not apply for this problem that Usp and Uch are different from the bare U at one
of the vertices. Usp and Uch here take care of vertex corrections [48].
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The use of the full Gσ(k+q) instead of G0
σ(k+q) in the above expression (Eq. (46)) would be

inconsistent with frequency-independent irreducible vertices. For the collective mode (Eq. (30))
this is well known to lead to the violation of the conservation laws as was discussed in detail in
the previous subsection. Here we insist that the same is true in the calculation of the effect of
electronic collective modes on the single-particle properties. Formally, this is suggested by the
similarity between the equation for the susceptibility (Eq. (30)) and that for the self-energy
(Eq. (31)) in terms of irreducible vertices. More importantly, two physical effects would be
absent if one were to use full G and frequency independent irreducible vertices. First, upper
and lower Hubbard bands would not appear because the U2/ω high-frequency behavior in
equation (68) that is necessary to obtain the Hubbard bands would set in too late, as we discuss
in Sections 1.2 and 6.1. This result is also apparent from the fact that FLEX calculations in
infinite dimension do not find upper and lower Hubbard bands [49] where the exact numerical
solution does. The other physical effect that would be absent is precursors of antiferromagnetic
bands, Section 5 and the pseudogap in A(kF, ω), that would not appear for reasons discussed
in Section 6. We also will see in Section 4 below that FLEX calculations of the single-particle
Green’s function, significantly disagree with Monte Carlo data, even away from half-filling, as
was already shown in Figure 1 of reference [30].

The chemical potential for interacting electrons µ is found from the usual condition on
particle number

n =
T

N

∑
k

G(1)
σ (k) exp(−ikn0−) =

T

N

∑
k

exp(−ikn0−)

iωn − εk + µ(1) − Σ(1)(k, kn)
· (47)

This chemical potential µ is, of course, different from µ0 but the Luttinger sum rule∑
θ(−εk + µ − Σ(1)) = nσ is satisfied to a high accuracy (about few percent) for all fill-

ings and temperatures TX ≤ T � W . As usual this occurs because the change in µ(1) − µ0

is compensated by the self-energy shift on the Fermi surface Σ(1)(kF, 0). For T < TX there is
some deviation from the Luttinger sum rule which is due to the appearance of the precursors of
the antiferromagnetic bands below TX (Sect. 5) which develop into true SDW bands at T = 0.

It is important to realize that G(0) on the right hand side of the equation for the self-energy
Σ cannot be calculated as G(0) = 1/(ω − εk + µ(1)), because otherwise it would not reduce to
zero-temperature perturbation theory when it is appropriate. As was pointed out by Luttinger,
(see also Sect. A.4) the “non-interacting” Green’s function used in the calculation for Σ should
be calculated as G(0) = 1/(ω−εk−Σ(n)(kF, 0)+µ(n)), where µ(n) is calculated on the same level
of accuracy as Σ(n)(kF, 0), i.e. from equation (47) with Σ(n)(k, ikn). In our calculation below,
we approximate µ(1) − Σ(1)(kF, 0) by µ0 because for the coupling strength and temperatures
considered in this paper (U ≤W/2 , TX ≤ T �W ) the Luttinger theorem is satisfied to high
accuracy and the change of the Fermi surface shape is insignificant. In addition, at half-filling
the condition µ − Σ(kF, 0) = µ0 is satisfied exactly at any U and T because of particle-hole
symmetry. For somewhat larger coupling strengths and away from half-filling, one may try to
improve the theory by using G(0) = 1/(ω − εk − Σ(1)(kF, 0) + µ(1)), with Σ(1) and µ found
self-consistently. However, the domain of validity of our approach is limited to the weak-to-
intermediate coupling regime since the strong-coupling regime requires frequency-dependent
pseudopotentials (see below).

Finally, let us note that, in the same spirit as Landau theory, the only vertices entering
our theory are of the type Γ↑↓ and Γ↑↑, or, through equation (34), Usp and Uch. In other
words, we look at the problem from the longitudinal spin and charge particle-hole channel.
Consequently, in the contact pseudopotential approximation the exact equation for the self-
energy (Eq. (31)) reduces to our expression (Eq. (46)) which does not have the factor 3 in
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the front of the spin susceptibility. This is different from some paramagnon theories, in which
such factor was introduced to take care of rotational invariance. However, we show in Ap-
pendix E.1 that these paramagnon theories are inconsistent with the sum-rule (Eq. (45)) which
relates one and two-particle properties. In our approach, questions about transverse spin fluc-
tuations are answered by invoking rotational invariance χxxsp = χyysp = χzzsp . In particular, one
can write the expression for the self-energy (Eq. (46)) in an explicitly rotationally invariant
form by replacing χsp by (1/3)Tr[χννsp ]. If calculations had been done in the transverse channel,
it would have been crucial to do them while simultaneously enforcing the Pauli principle in
that channel. In functional integration methods, it is well known that methods that enforce
rotational invariance without enforcing the Pauli principle at the same time give unphysical
answers, such as the wrong factor 2/3 in the RPA susceptibility [23] χsp = χ0/(1− (2/3)Uχ0)
or wrong Hartree-Fock ground state [50].

3.2.3. Internal Accuracy Check. — The quantitative accuracy of the theory will be discussed in
detail when we compare with Monte Carlo calculations in the next section. Here we show that
we can use the consistency requirement between one- and two-particle properties (Eq. (44)) to
gauge the accuracy of the theory from within the theory itself.

The important advantage of the expression for the self-energy Σ
(1)
σ (k) given by equation (46)

is that, as shown in Appendix (B), it satisfies the consistency requirement between one- and
two-particle properties (Eq. (44)), in the following sense

lim
τ→0−

T

N

∑
k

Σ(1)
σ (k)G(0)

σ (k)e−iknτ = U 〈n↑n↓〉 · (48)

Let G
(1)
σ be defined by [G

(1)
σ ]−1 ≡ G−1

0 −Σ(1). We can use the fact that in an exact theory we

should have Tr[Σ
(1)
σ G

(1)
σ ] in the above expression instead of Tr[Σ

(1)
σ G

(0)
σ ] to check the accuracy

of the theory. It suffices to compute by how much Tr[Σ
(1)
σ G

(0)
σ ] differs from Tr[Σ

(1)
σ G

(1)
σ ]. In

the parameter range U < 4t and n, T arbitrary but not too deep in the, soon to be described,

renormalized-classical regime, we find that Tr[Σ
(1)
σ G

(0)
σ ] differs from Tr[Σ

(1)
σ G

(1)
σ ] by at most

15%. Another way to check the accuracy of our approach is to evaluate the right-hand side of

the f -sum rule (Eqs. (A.22)) with nkσ = G
(1)
σ (k, 0−) and to compare with the result that had

been obtained with fk,σ. Again we find the same 15% disagreement, at worse, in the same
parameter range. As one can expect, this deviation is maximal at half-filling and becomes
smaller away from it.

Equation (46) for the self-energy Σ(1) already gives good agreement with Monte Carlo data
but the accuracy can be improved even further by using the general consistency condition

(Eq. (44)) on Tr[Σ
(1)
σ G

(1)
σ ] to improve on the approximation for vertex corrections. To do so

we replace Usp and Uch on the right-hand side of equation (46) by αUsp and αUch with α

determined self-consistently in such a way that equation (48) is satisfied with G
(0)
σ (k) replaced

by G
(1)
σ (k). For U < 4, we have α < 1.15. The slight difference between the irreducible vertices

entering the collective modes and the vertex corrections entering the self-energy formula can
be understood from the fact that the replacement of irreducible vertices by constants is, in
a way, justified by the mean-value theorem for integrals. Since the averages are not taken
over the same variables, it is clear that the vertex corrections in the self-energy formula and
irreducible vertices in the collective modes do not need to be strictly identical when they are
approximated by constants.

Before we move on to comparisons with Monte Carlo simulations, we stress that Σ(1) given
by equation (46) cannot be substituted back into the calculation of χsp,ch by simply replacing
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χ0 = G0G0 with the dressed bubble χ̃0 = GG. Indeed, this would violate conservation of
spin and charge and f -sum rule. In particular, the condition χsp,ch(q = 0, iqn 6= 0) = 0 that
follows from the Ward identity (A.28) would be violated as we see in equation (A.23). In the
next order, one is forced to work with frequency-dependent irreducible vertices that offset the
unphysical behavior of χ̃0 at non-zero frequencies.

4. Numerical Results and Comparisons with Monte Carlo Simulations

In this section, we present a few numerical results and comparisons with Monte Carlo simu-
lations. We divide this section in two parts. In the first one we discuss data sufficiently far
from half-filling, or at high enough temperature, where size effects are unimportant for systems
sizes available in Monte Carlo simulations. In the second part, we discuss data at half-filling.
There, size effects become important below the crossover temperature TX where correlations
start to grow exponentially (Sect. 5). All single-particle properties are calculated with our
approximation (Eq. (46)) for the self-energy using the vertex renormalization α explained in
the previous section. The results would differ at worse by 15% if we had used α = 1.

4.1. Far from the Crossover Temperature TX

4.1.1. Two-Particle Properties. — We have shown previously in Figures 4a-d of reference [29]
and in Figures 2-4 and Figure 6 of reference [34] that both spin and charge structure factor
sufficiently away from the crossover temperature TX are in quantitative agreement with Monte
Carlo data for values of U as large as the bandwidth. On the qualitative level, the decrease in
charge fluctuations as one approaches half-filling has been explained [29] as a consequence of
the Pauli principle embodied in the calculation of the irreducible vertex Uch [51].

Here we present in Figures 4 and 5 comparisons with a dynamical quantity, namely the spin
susceptibility. Similar comparisons, but with a phenomenological value of Usp, have been done
by Bulut et al. [52]. Figure 4 shows the staggered spin susceptibility as a function of Matsubara
frequencies for n = 0.87, T = 0.25 and U = 4. The effect of interactions is already quite large
for the zero-frequency susceptibility. It is enhanced by a factor of over 5 compared with the
non-interacting value. Nevertheless, one can see that the theory and Monte Carlo simulations
are in good agreement.

Figure 5 shows the temperature dependence of the zero-frequency staggered spin susceptibil-
ity for the same filling and interaction as in the previous figure. Symbols represent Monte Carlo
simulations from references [53, 99], the solid line is for our theory while dotted and dashed
lines are for two versions of FLEX. Surprisingly, the fully conserving FLEX theory, (dashed
line) compares worse with Monte Carlo data than the non-conserving version of this theory
that neglects the so-called Aslamasov-Larkin diagrams (dotted line). By contrast, our theory
is in better agreement with the Monte Carlo data than FLEX for the staggered susceptibility
χsp (q = (π, π) , iωn = 0), and at the same time it agrees exactly with the conservation law that
states that χsp,ch(q = 0, iωn 6= 0) = 0.

Finally, Figure 6 shows the double occupancy 〈n↑n↓〉 as a function of filling for various
values of U . The symbols again represent Monte Carlo data for T = 1/6, and the lines are
the results of our theory. Everywhere the agreement is very good, except for n = 1, U = 4. In
the latter case, the system is already below the crossover temperature TX to the renormalized
classical regime. As explained in Section 7, the appropriate procedure for calculating double
occupancy in this case is to take for 〈n↑n↓〉 its value (dotted line) at TX instead of using the
ansatz equation (40). In any case, the difference is not large.
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Fig. 4. — Comparisons between Monte Carlo simulations [99] and our theory for the spin susceptibility
at Q = (π, π) as a function of Matsubara frequency. The temperature is T = 0.25, and the system
size 8× 8. The factor 1/2 on the vertical axis is due to the fact that the susceptibility in [99] is χ+−

a quantity that is by definition twice smaller then ours and that of [53].

Fig. 5. — Comparisons between the Monte Carlo simulations (BW) and FLEX calculations presented
in Figure 19 of reference [53] and our theory for the spin susceptibility at Q = (π, π) as a function of
temperature at zero Matsubara frequency. The filled circles (BWS) are from reference [99].
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of filling and for various values of U except for U = 4 where the dotted line shows the results of our
theory at the crossover temperature T = TX.
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4.1.2. Single-Particle Properties. — Figure 1a of reference [30] shows G (k, τ) for filling
n = 0.875, temperature T = 0.25 and U = 4 for the wave vector on the 8× 8 lattice which is
closest to the Fermi surface, namely (π, 0). Our theory is in agreement with Monte Carlo data
and with the parquet approach [53] but in this regime second-order perturbation theory for the
self-energy gives the same result. Surprisingly, FLEX is the only theory that disagrees signifi-
cantly with Monte Carlo data. The good performance of perturbation theory (see also [54]) can
be explained in part by compensation between the renormalized vertices and susceptibilities
(Usp < U , χsp(q) > χ0(q); Uch > U , χch(q) < χ0(q)).

We have also calculated Re(Σ (ikn) /ikn) and compared with the Monte Carlo data in Fig-
ure 2a of reference [52] obtained at n = 0.87, U = 4, β = 6. Our approach agrees with Monte
Carlo data for all frequencies, but again second-order perturbation theory gives similar results.

4.2. Close to Crossover Temperature TX at Half-Filling

4.2.1. Two-Particle Properties. — The occurrence of the crossover temperature TX at half-
filling is perhaps best illustrated in the upper part of Figure 7 by the behavior of the static
structure factor Ssp (π, π) for U = 4 as a function of temperature. When the correlation length
becomes comparable to the size of the system used in Monte Carlo simulations [55], the static
structure factor starts to increase rapidly, saturating to a value that increases with system
size. The solid line is calculated from our theory for an infinite lattice. The Monte Carlo
data follow our theoretical curve (solid line) until they saturate to a size-dependent value.
The theory correctly describes the static structure factor not only above TX but also as we
enter the renormalized classical regime at TX. Analytical results for this regime are given in
Section 5.1.1. Note that the RPA mean-field transition temperature for this value of U is more
than three times larger than TX ∼ 0.2. The size-dependence of Monte Carlo data for Ssp (q)
at all other values of q 6= (π, π) available in simulations is negligible and our calculation for
infinite system reproduces this data (not shown).

4.2.2. Single-Particle Properties. — Equal-time (frequency integrated) single-particle proper-
ties are much less sensitive to precursor effects than dynamical quantities as we now proceed to
show. For example, n (k) = G (k, 0−) is a sum of G (k, ikn) over all Matsubara frequencies. We
have verified (figure not shown) that 1

N

∑
kσ nkσ∂

2εk/∂k
2
x obtained from Monte Carlo simula-

tions [56] is given quite accurately by either second-order perturbation theory or by our theory.
This has very important consequences since, for this quantity, the non-interacting value differs
from second-order perturbation theory by at most 15%. This means that the numerical value
of the right-hand side of the f sum-rule (Eq. (A.22)) is quite close to that obtained from the
left-hand side using our expression for the spin and charge susceptibility.

One can also look in more details at n (k) itself instead of focusing on a sum rule. Figure 8
shows a comparison of our theory and of second order perturbation theory with Monte Carlo
data for n (k) obtained for a set of lattice sizes from 6× 6 to 16× 16 at n = 1, T = 1/6, U = 4.
Size effects appear unimportant for this quantity at this temperature. These Monte Carlo data
have been used in the past [57] to extract a gap by comparison with mean field SDW theory.
Our theory for the same set of lattice sizes is in excellent agreement with Monte Carlo data
and predicts a pseudogap at this temperature, as we will discuss below. However, for available
values of k on finite lattices, second order perturbation theory is also in reasonable agreement
with Monte Carlo data for n (k). Since second order perturbation theory does not predict a
pseudogap, this means that n (k) is not really sensitive to the opening of a pseudogap. This
is so both because of the finite temperature and because the wave vectors closest to the Fermi
surface are actually quite far on the appropriate scale. For this filling, the value of n (k) is
fixed to 1/2 on the Fermi surface itself.



N◦11 NON-PERTURBATIVE APPROACH TO HUBBARD MODEL 1327

0

10

S
s

p

(

π,
π )

Monte Carlo

4x4

6x6

8x8

10x10

12x12

U=4

n=1

0.0 0.2 0.4 0.6 0.8 1.0

T

0.50

0.0

1.0

z

Monte Carlo

4x4

8x8

16x16

Tx

This work inf. lattice

This work, 16x16 mesh

Pertub. theory

th

~

Fig. 7. — The upper part of the figure, adapted from reference [29], shows the temperature dependence
of Ssp(π, π) at half-filling n = 1. The solid line is our theory for an infinite system while symbols are
Monte Carlo data from reference [56]. The bottom part of the figure, adapted from reference [30],

shows the behavior of ˜z(T ) = −2G(kF, β/2) in equation (49), as a function of temperature as obtained
from Monte Carlo [53] simulations (symbols), from second order pertrubation theory (dashed line) and
from our theory for an infinite system (solid line) and for a 16× 16 lattice (dashed line).

It is thus necessary to find a dynamical quantity defined on the Fermi surface whose tem-
perature dependence will allow us to unambiguously identify the pseudogap regime in both
theory and in Monte Carlo data. The most dramatic effect is illustrated in the lower part of
Figure 7 where we plot the quantity z̃ (T ) defined by [30,58]

z̃ (T ) = −2G (kF, β/2) =

∫
dω

2π

A (kF, ω)

cosh (βω/2)
· (49)

The physical meaning of this quantity z̃ (T ) is that it is an average of the single-particle
spectral weight A (kF, ω) within T ≡ 1/β of the Fermi level (ω = 0). When quasiparticles
exist, this is the best estimate of the usual zero-temperature quasiparticle renormalization
factor z ≡ 1/(1 − ∂Σ/∂ω) that can be obtained directly from imaginary-time Monte Carlo
data. For non-interacting particles z̃ (T ) is unity. For a normal Fermi liquid it becomes equal
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Fig. 8. — Occupation number n(k) as a function of wave vector k at half-filling for T = 1/6, U = 4,
and system sizes 6× 6 to 16× 16. The symbols are Monte Carlo results from reference [57] while the
solid line is our theory and the dotted line is the prediction from second order perturbation theory.
The dashed line shows the result for U = 0 as a reference.

to a constant less than unity as the temperature decreases since the width of the quasiparticle
peak scales as T 2 and hence lies within T of the Fermi level. However, contrary to the usual
z ≡ 1/(1− ∂Σ/∂ω) this quantity gives an estimate of the spectral weight A (kF, ω) around the
Fermi level, even if quasiparticles disappear and a pseudogap forms, as in the present case, (see
Sect. 5).

One can clearly see from the lower part of Figure 7 that while second-order perturbation
theory exhibits typical Fermi-liquid behavior for z̃ (T ), both Monte Carlo data [53] and a
numerical evaluation of our expression for the self-energy lead to a rapid fall-off of z̃ (T ) below
TX (for U = 4, TX ≈ 0.2 [29]). The rapid decrease of z̃ (T ) clearly suggests non Fermi-liquid
behavior. We checked also that our theory reproduces the Monte Carlo size-dependence. This
dependence is explained analytically in Section 5.1.2. In reference [30] we have shown that at
half-filling, our theory gives better agreement with Monte Carlo data [53] for G (kF, τ) than
FLEX, parquet or second order perturbation theory.

To gain a qualitative insight into the meaning of this drop in z̃ (T ), we use the analytical
results of the next section to plot in Figure 9 the value of A (kF, ω). This plot is obtained by
retaining only the contribution of classical fluctuations (Eq. (59)) to the self-energy. One sees
that above TX, there is a quasiparticle but that at T ∼ TX a minimum instead of a maximum
starts to develop at the Fermi surface ω = 0. Below TX, the quasiparticle maximum is replaced
by two peaks that are the precursors of antiferromagnetic bands. This is discussed in detail in
much of the rest of this paper.

4.3. Phase Diagram. — The main features predicted by our approach for the magnetic phase
diagram of the nearest-neighbor hopping model have been given in reference [29]. Needless to
say, all our considerations apply in the weak to intermediate coupling regime. Note also that
both quantum critical and renormalized classical properties of this model have been studied
in another publication [33]. The shape of the phase diagram that we find is illustrated in
Figure 10 for U = 2.5 and U = 4.
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Fig. 9. — Qualitative sketch of the spectral weight at the Fermi wave vector at half-filling for three
temperatures. This plot is obtained by retainig only the classical contribution to the self-energy using
parameters corresponding to the typical U = 4 of Monte Carlo simulations. The top plot is for T > TX,
the middle one for T ∼ TX and the bottom one for T < TX. The precursors of antiferromagnetic bands
would look like this last figure.

Fig. 10. — Crossover temperature TX as a function of filling for U = 4 and U = 2.5. On this crossover
line, ξ2 is enhanced by a factor of 500 over the bare value. Filled symbols indicate that the crossover is
at the antiferromagnetic wave vector, while open symbols indicate a crossover at an incommensurate
wave vector. Reproduced with permission from reference [100].

At zero temperature and small filling, the system is a paramagnetic Fermi liquid, whatever
the value of the interaction U (< W ). Then, as one moves closer to half-filling, one hits a quan-
tum critical point at a value of filling nc. Since, Usp in our theory saturates with increasing U ,
the value of nc is necessarily larger than about nc(U =∞) = 0.68. At this point, incommensu-
rate order sets in at a wave vector (qc, π) or at symmetry-related points. Whatever the value
of U , the value of qc is contained [29] in the interval 0.74π < qc ≤ π, increasing monotonously
towards 0.74π as U increases. Since our approach applies only in the paramagnetic phase, at
zero temperature we cannot move closer to half-filling. Starting from finite-temperature then,
the existence of long-range order at low temperature is signaled by the existence of a crossover
temperature TX (n,U) below which correlations start to grow exponentially. We have already
discussed the meaning of TX (n,U) at half-filling. This crossover temperature becomes smaller
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and smaller as one moves away from half-filling, until it reaches the quantum-critical point
that we just discussed. The correlations that start to grow at TX (n,U) when n = 1 are at
the antiferromagnetic wave vector, and they stay at this wave vector for a range of fillings n.
Finally, at some filling, the correlations that start to grow at TX (n,U) are at an incommensu-
rate value until the quantum-critical point is reached.

Note that the above phase diagram is quite different from the predictions of Hartree-Fock
theory mostly because of the strong renormalization of Usp. This quantitative change leads
to qualitative changes in the Hartree-Fock phase diagram since, for example, Stoner ferro-
magnetism never occurs in our picture. While the existence of ferromagnetism in the strong
coupling limit has been proven only recently [59], the absence of Stoner ferromagnetism in
the Hubbard model was already suggested by Kanamori [2] a long time ago and was verified
by more recent studies [44, 60, 61]. More relevant to the present debate though, is the fact
that SDW order persists away from half-filling for a finite range of dopings. While this is
in agreement with slave-boson approaches [62] and studies [63] using the infinite-dimension
methodology [11], it is in clear disagreement with Monte Carlo simulations [64]. Our approach
certainly fails sufficiently below TX, but given the successes described above, we believe that it
can correctly predict the exponential growth of fluctuations at TX. It would be difficult to imag-
ine how one could modify the theory in such a way that the growth of magnetic fluctuations
does not occur even at incommensurate wave vectors. Also, such an approach would also need
to stop the growth of fluctuations that we find as we approach the quantum critical point along
the zero temperature axis, from the low-filling, paramagnetic side, where TX (n < nc, U) = 0.

It could be that Monte Carlo simulations [64] fail to see long-range order at zero temperature
away from half-filling because at zero temperature, in the nearest-neighbor model, this order
has a tendency to being incommensurate everywhere except at n = 1. Furthermore, as we saw
above, this incommensuration is in general far from one of the available wave vectors on an
8 × 8 lattice. It comes close to (0.75π, π) only for the largest values of U available by Monte
Carlo. Hence, incommensurate order on small lattices is violently frustrated not only by the
boundary conditions, but also by the fact that there is no wave vector on what would be the
Fermi surface of the infinite system. This means that the electron-electron interaction scatters
the electrons at wave-vectors that are not those where the instability would show up, rendering
these scatterings not singular. This is clearly an open problem.

5. Replacement of Fermi Liquid Quasiparticles by a Pseudogap in Two Dimensions
below TX

One of the most striking consequences of the results discussed in the context of Monte Carlo
simulations is the fall of the spectral weight below the temperature TX where antiferromag-
netic fluctuations start to grow exponentially in two dimensions. We have already shown in a
previous publication [30] that this corresponds to the disappearance of Fermi liquid quasipar-
ticles at the Fermi surface, well above the zero temperature phase transition. We also found
that, simultaneously, precursors of the antiferromagnetic bands develop in the single-particle
spectrum. Given the simplicity of our approach, it is possible to demonstrate this phenomenon
analytically. This is particularly important here because size effects and statistical errors make
numerical continuation of the Monte Carlo data to real frequencies particularly difficult. Such
analytic continuations using the maximum entropy method [55] have, in the past, lead to a
conclusion different from the one obtained later using singular value decomposition [65].

In this section then, we will consider the conditions for which Fermi liquid quasiparticles can
be destroyed and replaced by a pseudogap in two dimensions. The major part of this section
will be concerned with the single particle pseudogap and the precursors of antiferromagnetic
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bands in the vicinity of the zero temperature antiferromagnetic phase transition in the positive
U Hubbard model. However, it is well known that the problem of superconductivity is formally
related to the problem of antiferromagnetism, in particular at half-filling where the nearest-
neighbor hopping positive U Hubbard model maps exactly onto the nearest-neighbor negative
U Hubbard model. The corresponding canonical transformation maps the q = (π, π) spin cor-
relations of the repulsive model onto the q = 0 pairing and q = (π, π) charge correlations of the
attractive model while the single-particle Green’s functions of both models are identical. Thus
all our results below concerning the opening of the pseudogap in A (kF, ω) in the repulsive
U half-filled Hubbard model are directly applicable to the attractive U model at half-filling,
the only difference being in the physical interpretation. While in the case of repulsive inter-
action the pseudogap is due to the critical thermal spin fluctuation, in the case of attractive
interactions it is, obviously, due to the critical thermal pairing and charge fluctuations. Away
from half-filling the mapping between two models is more complicated and the single particle
spectra in the pairing pseudogap regime A (kF, ω) have important qualitative differences with
the single particle spectra in the magnetic pseudogap regime. However, even in this case there
are very useful formal similarities between two problems so that in Section 5.6 we will give
some simple analytical results for the self-energy in the regime dominated by critical pairing
fluctuations.

The problem of precursor effects in the repulsive Hubbard model has been first studied by
Kampf and Schrieffer [35]. Their analysis however was done at zero temperature and although
the precursor effect that they found, called “shadow bands”, looks similar to what we find,
there are a number of important differences. For example, they find a quasiparticle between the
precursors of antiferromagnetic bands, while we do not. Also, one does not obtain precursors at
zero temperature when one uses our more standard expression for the dynamical susceptibility
instead of the phenomenological form χK Shr = f(q)g(ω) that they use. The physical reason
why a function that is separable in both momentum and frequency, such as χK Shr, leads to
qualitatively different results than the conventional one has been explained in reference [36].
The microscopic justification for χK Shr is unclear. We comment below on this problem as well
as on some of the large related literature that has appeared lately.

Repeating some of the arguments of reference [30], we first show by general phase space
arguments that the feedback of antiferromagnetic fluctuations on quasiparticles has the po-
tential of being strong enough to destroy the Fermi liquid only in low enough dimension, the
upper critical dimension being three. Then we go into more detailed analysis to give explicit
analytic expressions for the quasi-singular part of the self-energy, first in Matsubara frequency.
The analysis of the self-energy expression directly in real-frequencies is in Appendix (D). The
latter analysis is useful to exhibit in the same formalism both the Fermi liquid limit and the
non-Fermi liquid limit.

For simplicity we give asymptotics for n = 1 at the Fermi wave vector, where ε(kF) = 0,
but similar results apply for n 6= 1 as long as there is long-range order at T = 0 and one is
below TX. This case is also discussed briefly, but for more details the reader is referred to
reference [36].

5.1. Upper Critical Dimension for the Destruction of Quasiparticles by

Critical Fluctuations. — Before describing the effect of spin fluctuations on quasipar-
ticles, we first describe the so-called renormalized classical regime of spin fluctuations that
precedes the zero-temperature phase transition in two dimensions.

5.1.1. Renormalized Classical Regime of Spin Fluctuations. — The spin susceptibility χsp (q, 0)
below TX is almost singular at the antiferromagnetic wave vector Q2 = (π, π) because
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the energy scale δU ≡ Umf,c − Usp (Umf,c ≡ 2/χ0(Q, 0)) associated with the proximity to
the SDW instability becomes exponentially small [29]. This small energy scale, δU � T , leads
to the so-called renormalized classical regime for the fluctuations [66]. In this regime, the
main contribution to the sum over Matsubara frequencies entering the local-moment sum rule
(Eq. (38)) comes from iqn = 0 and wave vectors (q−Q)

2 ≤ ξ−2 near Q. Approximating
χsp (q, 0) by its asymptotic form

χsp(q, 0) ≈
1

Uspξ
2
0

2

((q−Qd)
2

+ ξ−2)
(50)

where Q2 = (π, π), Q3 = (π, π, π) and

ξ2
0 ≡

−1

2χ0(Q)

∂2χ0 (q)

∂q2
x

∣∣∣∣
q=Qd

; ξ ≡ ξ0(Usp/δU)1/2 (51)

we obtain, in d dimensions

σ̃2 =
2T

Uspξ
2
0

∫
ddq

(2π)d
1

q2 + ξ−2
(52)

where σ̃2 ≡ n − 2〈n↑n↓〉 − C < 1 is the left-hand side of equation (38) minus corrections
C that come from the sum over non-zero Matsubara frequencies (quantum effects) and from

(q−Q)
2 � ξ−2. There is an upper cutoff to the integral which is less than or of the order of

the Brillouin zone size. The important point is that the left-hand side of the above equation
(Eq. (52)) is bounded and weakly dependent on temperature. This implies, as discussed in
detail in reference [33], that the above equation leads to critical exponents for the correlation
length that are in the spherical model (n→∞) universality class. For our purposes, it suffices
to notice that the integral converges even when ξ →∞ in more than two dimensions. This leads
to a finite transition temperature. In two dimensions, the transition temperature is pushed
down to zero temperature and, doing the integral, one is left with a correlation length ξ that
grows exponentially below TX

ξ ∼ exp

(
πσ̃2ξ2

0

Usp

T

)
· (53)

The important consequence of this is that, below TX, the correlation length quickly becomes
larger than the single-particle thermal de Broglie wave length ξth = vF/ (πT ). This has dra-
matic consequences on quasiparticles in two dimensions.

5.1.2. Effect of Critical Spin Fluctuations on Quasiparticles. — When the classical fluctuations
(iqn = 0) become critical, they also give, in two dimensions, a dominant contribution to the self-
energy at low frequency. To illustrate what we mean by the classical frequency contribution,
neglect the contribution of charge fluctuations and single out the zero Matsubara frequency
component from equation (46) to obtain

Σ (k, ikn) ≈ Un−σ +
U

4

T

N

∑
q

Uspχsp (q, 0)
1

ikn − ε̃k+q

+
U

4

T

N

∑
q

∑
iqn 6=0

Uspχsp (q, iqn)
1

ikn + iqn − ε̃k+q
· (54)

Here, ε̃k is measured relative to the chemical potential. The last term is the contribution
from quantum fluctuations. In this last term, the sum over Matsubara frequencies iqn must
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be done before the analytical continuation of ikn to real frequencies otherwise this analytical
continuation would involve going through complex plane poles of the other terms entering
the full sum over iqn. The contribution from classical fluctuations, iqn = 0, does not have
this problem and furthermore it has the correct asymptotic behavior at ikn → ∞. Hence the
contribution of classical fluctuations to the retarded self-energy ΣR (k, ω) can be obtained from
the iqn = 0 term by trivial analytical continuation ikn → ω + i0. Note also that the chemical
potential entering G(0) in the self-energy formula is µ0 = µ = 0 at half-filling.

Doing the same substitution as above for the asymptotic form of the spin susceptibility
(Eq. (50)) in the equation for the self-energy (Eq. (46)) one obtains the following contribution
to Σ from classical fluctuations

Σcl (k, ikn) ∼=
UT

2ξ2
0

∫
ddq

(2π)d
1

q2 + ξ−2

1

ikn − ε̃k+Q − q · vk+Q

, (55)

where we have expanded ε̃k+Q+q ' ε̃k+Q + q · vk+Q. In the case that we consider, namely
half-filling and k = kF, we have µ0 = µ = 0 and ε̃kF+Q = 0. The key point is again that in
two dimensions the integral in this equation (Eq. (55)) is divergent at small q for ξ = ∞. In
a Fermi liquid, the imaginary part of the self-energy at the Fermi surface (ω = 0) behaves as
Σ′′R(kF, 0) ∼ T 2. Here instead, we find a singular contribution

Σ′′R(kF, 0) ∝ T

∫
dd−1q⊥

1

q2
⊥ + ξ−2

∝ Tξ3−d (56)

that is proportional to ξ in d = 2 and hence is very large Σ′′R(kF, 0) ≈ −Uξ/(ξthξ2
0) > 1 when

the condition ξ > ξth is realized. By contrast, for d = 3, Σ′′R(kF, 0) ∼ −U (ln ξ) /
(
ξ2
0ξth

)
,

so that the Fermi liquid is destroyed only in a very narrow temperature range close the Néel
temperature TN. Dimensional analysis again suffices to show that in four dimensions the
classical critical fluctuations do not lead to any singular behavior. Three dimensions then
is the upper critical dimension. As usual, logarithmic corrections exist at the upper critical
dimension. The effect will be very small in three dimensions not only because it is logarithmic,
but also because the fluctuation regime is very small, extending only in a narrow temperature
range around the Néel temperature. By contrast, in two dimensions the effect extends all the
way from the crossover temperature, TX, which is of the order of the mean-field transition
temperature, to zero temperature where the transition is.

Wave vectors near Van Hove singularities are even more sensitive to classical thermal fluctua-
tions. Indeed, near this point the expansion should be of the type εkVH+q+(π,π) ∝ q

2
x−q

2
y. This

leads, in two dimensions, to even stronger divergence in Σ′′R(kF, 0)∝Tξ2
∫

dqy
[(

2q2
y + 1

)
|qy|
]−1

[36]. Even if the logarithmic divergence is cutoff the prefactor is larger by a factor of ξ compared
with points far from the Van Hove singularities.

5.2. Precursors of Antiferromagnetic Bands in Two Dimensions. — Let us analyze
in more details the consequences of this singular contribution of critical fluctuations to the
self-energy in two dimensions. The integral appearing in the two-dimensional version of the
expression for the self-energy (Eq. (55)), can be performed exactly [67]

Σ (kF, ikn) =
U

2
− i

UT

8πξ2
0

√
k2

n − v
2
Fξ
−2

ln
kn +

√
k2

n − v
2
Fξ
−2

kn −
√
k2

n − v
2
Fξ
−2

+R. (57)

Here R is a regular part.
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As a first application, we can use this expression to understand qualitatively both the tem-
perature and size dependence of the Monte Carlo data for z̃(T ) appearing in Figure 2 of
reference [30] or in the lower panel of Figure 7. Indeed, z̃(T ) can be written as the alter-
nating series −2G (kF, β/2) = −4T

∑∞
n=1 (−1)n / (kn − Σ′′ (kF, ikn)). Even though the series

converges slowly, in the beginning of the renormalized classical regime and for qualitative
purposes it suffices to use the first term of this series. Then, using the expressions for the
correlation length (Eq. (53)) and for the self-energy (Eq. (57)), one finds

z̃(T ) ∼
T 2

σ̃2UUsp

√
1−

ξ2
th

ξ2
, TX − T � TX. (58)

On the infinite lattice, ξ starts growing exponentially below TX, quickly becoming much larger
than ξth. This implies z̃(T ) ' T 2. On finite lattices ξ ∼

√
N , which explains the size effect

observed in Monte Carlo i.e. smaller z̃ for smaller size N , (ξth(TX) ∼ 5 for Fig. 7).

The analytic continuation of Σ (kF, ikn) in equation (57) is

ΣR (kF, ω) =
U

2
+

UT

8πξ2
0

√
ω2 + v2

Fξ
−2

[
ln

∣∣∣∣∣ω +
√
ω2 + v2

Fξ
−2

ω −
√
ω2 + v2

Fξ
−2

∣∣∣∣∣− iπ
]

+R. (59)

For the wave vectors k away from the Fermi surface the anomalous contribution due to the
classical fluctuation has a similar form but with ω replaced by (ω− ε̃k+Q). When T > TX, the
correlation length ξ becomes of order unity and, as we will show in Appendix D, the regular
part R dominates so that one recovers standard Fermi liquid behavior. Furthermore, even
for large correlation length the regular part cannot be neglected when ω � T since the term
exhibited here becomes small. Hence we concentrate on small frequencies and on T < TX

where the regular part R can be neglected.

Exactly at the Fermi level (ω = 0) we recover the result of the previous section, namely that
the imaginary part of the self-energy for ξ > ξth increases exponentially when the temperature
decreases, Σ′′(kF, 0) ∼ Uξ/(ξthξ

2
0) ∝ Tξ ∝ T exp

(
πσ̃2ξ2

0Usp/T
)
. The above analysis shows by

contradiction that in the paramagnetic state below TX there is no Fermi-liquid quasiparticle at
kF, yet the symmetry of the system remains unbroken at any finite T . Indeed, starting from

quasiparticles (G
(0)
σ ) we found that as temperature decreases, Σ′′R(kF, 0) increases indefinitely

instead of decreasing, in direct contradiction with the starting hypothesis. By contrast, a self-
consistent treatment where we use in equation (46) the full Gσ with a large Σ′′R(kF, 0) shows
that, for T < TX, Σ′′R(kF, 0) remains large in d = 2 and does not vanish as T → 0, again
confirming that the system is not a Fermi liquid in this regime (See however Sect. 6.2 below).
Strong modifications to the usual Fermi liquid picture also persist away from half-filling as long
as TX(n) > 0, as we discuss later.

One can check that the large Σ′′R(kF, 0) in two dimensions (for T < TX) leads to a pseudogap
in the infinite lattice, contrary to the conclusion reached in reference [55]. Indeed, instead of
a quasiparticle peak, the spectral weight A (kF, ω) ≡ −2ImGR (kF, ω) has a minimum at the
Fermi level ω = 0 and two symmetrically located maxima away from it. More specifically, for
vF/ξ < |ω| < T we have

A (kF, ω) ∼=
2 |ω|UT/(8ξ2

0)

[ω2 − UUspσ̃2/4]2 + [UT/(8ξ2
0)]2
· (60)
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The maxima are located at ω = ±
√
UUspσ̃/2. These two maxima away from zero fre-

quency correspond to precursors of the zero-temperature antiferromagnetic (or SDW) bands
(shadow bands [35]). There is no quasiparticle peak between these two maxima when ξ > ξth.
This remains true in the case of no perfect nesting as well [36] (see also Sect. 5.5). We note
that this is different from the results of the zero-temperature (ξth =∞) calculations of Kampf
and Schrieffer [35] that were based on a phenomenological susceptibility separable in momen-
tum and frequency χK.Sh. = f(q)g(ω). As was explained in reference [36], the existence of
precursors of antiferromagnetic bands (shadow bands in the terminology of Ref. [35]) at zero
temperature is an artifact of the separable form of the susceptibility. The third peak between
the two precursors of antiferromagnetic bands that was found in reference [35] is due to the
fact that at zero temperature the imaginary part of the self-energy Σ′′(k, ω = 0, T = 0) is
strictly zero at all k. In our calculations, precursor bands appear only at finite tempera-
ture when the system is moving towards a zero-temperature phase transition. In this case,
the imaginary part of the self-energy goes to infinity for k on the “shadow Fermi surface”
limT→0 Σ′′(kF + Q, 0) ∝ Tξ ∝ T exp (Cst/T )→∞ and to zero at all other wave vectors. This
is consistent with the SDW result which we should recover at T = 0. Indeed, the latter result
can be described by the self-energy ΣR(k, ω) = ∆2/(ω− ε̃(k + Q) + iη) which implies that the
imaginary is a delta function Σ′′(k, ω) = −πδ(ω − ε̃(k + Q)) instead of zero at all k as in a
Fermi liquid. We note also that analyticity and the zero value of Σ′′(k, ω = 0) in reference [35]
automatically implies that the slope of the real part of the self-energy ∂Σ′(k, ω)/∂ω|ω=0 is neg-
ative. By contrast, in our case ∂Σ′(kF +Q, ω)/∂ω|ω=0 is positive and increases with decreasing
temperature, eventually diverging at the zero-temperature phase transition. The real part of
the self-energy obtained using the asymptotic form equation (59) is at the bottom left corner
of Figure 11 with the corresponding spectral function A (kF, ω) shown above it. In Figure 9
we have already shown the evolution of the spectral function A (kF, ω) with temperature. The
positions of the precursors of antiferromagnetic bands scale like σ̃/2 which itself, at small cou-
pling in two dimensions, scales like the mean field SDW transition temperature or gap (see
Appendix B of Ref. [33]). As U increases, the predicted positions of the maxima obtained
from the asymptotic form (Eq. (60)) will be less accurate since they will be at intermediate
frequencies and the regular quantum contribution to the self-energy will affect more and more
the position of the peaks.

We have predicted [30] that the exponential growth of the magnetic correlation length ξ
below TX will be accompanied by the appearance of precursors of SDW bands in A (kF, ω)
with no quasiparticle peak between them. By contrast with isotropic materials, in quasi-
two-dimensional materials this effect should exist in a wide temperature range, from TX

(TX � U < EF) to the Néel temperature TN (TX − TN ∼ 102 K).

5.3. Contrast between Magnetic Precursor Effects and Hubbard Bands. —

Although there are some formal similarities between the precursors of antiferromagnetic bands
and the Hubbard bands (see Sect. 6) we would like to stress that these are two different physi-
cal phenomena. A clear illustration of this is when a four peak structure exists in the spectral
function A(k, ω), two peaks being precursors of antiferromagnetic bands, and two peaks be-
ing upper and lower Hubbard bands. The main differences between these bands are in the
k-dependence of the self-energy Σ(k, ω) and in the conditions for which these bands develop.
Precursors of antiferromagnetic bands appear even for small U in the renormalized classical
regime T < TX, and their dispersion has the quasi-periodicity of the magnetic Brillouin zone.
In contrast, upper and lower Hubbard bands are high-frequency features that appear only for
sufficiently large U > W and T < U and have the periodicity of the whole Brillouin zone
in the paramagnetic state. Furthermore, the existence of Hubbard bands is not sensitive to
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dimensionality so they exist even in infinite dimension where the self-energy does not depends
on momentum k at all. In contrast, the upper critical dimension for the precursors of antifer-
romagnetic bands is three (see Sect. 5.4).

In our theory the precursors of antiferromagnetic bands come from the almost singular behav-
ior of the zero Matsubara frequency susceptibility χsp (q, 0), which leads to the characteristic
behavior of Σ(k, ω) = ∆2

Sh.B/ (ω − ε(k + Q)) with ∆2
Sh.B ∝ T ln(ξ). On another hand, the Hub-

bard bands appear in our theory because the high-frequency asymptotics Σ(k, ω) ∝ ∆2
H.B/ω

has already set in for ω > W , and this leads to the bands at ω = ±∆H.B for ∆ > W (see
for more details Sect. 6). The coefficient ∆2

H.B is determined by the sum over all Matsubara
frequencies and q: ∆2

H.B = TUN−1
∑

q,n [Uspχsp(q, iωn) + Uchχch(q, iωn)].

It was noticed in Monte Carlo simulations [68,78] that for intermediate U , the spectral weight
has four maxima. We think that peaks at ω ∼ ±U/2 are Hubbard bands, while the peaks closer
to ω = 0 are precursors of antiferromagnetic bands. If this interpretation is correct, then the
latter peaks should disappear with increasing temperature when ξ becomes smaller than ξth,
while the Hubbard bands should exist as long as T < U .

While the location of the precursors of antiferromagnetic bands should be accurate in our
theory, the same will not be true for the location of the upper and lower Hubbard bands. This
is because our theory is tuned to the low frequency behavior of the irreducible vertices and does
not have the right numerical coefficient in the high-frequency expansion of the self-energy, as
shown in equation (E.10) below. Nevertheless, our analytical approach to date is the only one
that agrees at least qualitatively with the finding that precursors of antiferromagnetic bands
as well as upper and lower Hubbard bands can occur simultaneously. Note however that a four
peak structure at n = 1 was also obtained in reference [70] but the physical difference between
Hubbard bands and precursors of antiferromagnetic bands was not clearly spelled out. We
comment on recent findings of the FLEX approach in Section 6 [37,38,69].

5.4. Can the Precursors of Antiferromagnetic Bands Exist in Three

Dimensions?. — In two dimensions, the finite-temperature phase is disordered, but the zero-
temperature one is ordered and has a finite gap, except at the quantum critical point away
from half-filling. Hence, precursors of antiferromagnetic bands that appear in the paramagnetic
state do so with a finite pseudogap which appears consistent with the finite zero-temperature
gap towards which the system is evolving. By contrast, in higher dimensions the gap opens-up
with a zero value at the transition temperature. Based on this simple argument, one does not
expect precursors of antiferromagnetic bands in dimensions larger than two (see, however, be-
low). Here, we will also show that there is no phase space reasons for the existence of precursors
of the antiferromagnetic bands when d > 2.

We have already shown that in three dimensions the quasiparticle at the Fermi level at half-
filling will have an imaginary part of the self-energy that grows like T ln ξ, an effect that is
much weaker than Tξ found in two dimensions. Despite this small effect, in three dimensions
the classical fluctuations do not affect the self-energy for energies larger than vFξ

−1. Indeed,
consider the contribution of classical thermal fluctuations to the self-energy (Eq. (55)). In two
dimensions, we have for |ω| > vFξ

−1

Re
[
Σ2d

cl (kF, ω)
]
∼=
UT

2ξ2
0

∫
d2q

(2π)2

1

q2 + ξ−2

1

ω
, (61)

which allows us to recover the approximate formula for the spectral weight given in equa-
tion (60) above. In three dimensions however, this approximation cannot be done because
the integral is not dominated by small values of q. To see this explicitly in three dimensions,
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consider the contribution of classical thermal fluctuations

Σ3d
cl (kF, ω + iη) ∼=

UT

2ξ2
0

∫
dq‖
2π

∫
d2q⊥

(2π)2

1

q2
⊥ + q2

‖ + ξ−2

1

ω + iη + vFq‖
(62)

∼=
UT

2ξ2
0

1

4π

∫
dq‖
2π

ln

[
Λ2
⊥ + q2

‖ + ξ−2

q2
‖ + ξ−2

]
1

ω + iη + vFq‖
· (63)

As long as |ω| > vFξ
−1, the logarithmic singularity that develops at q‖ = 0 when ξ−1 → 0

is integrable and gives no singular contribution to the self-energy. Hence, unusual effects of
classical thermal fluctuations are confined to the range of frequencies |ω| < vFξ

−1. At higher
frequencies, |ω| > vFξ

−1, all bosonic Matsubara frequencies in equation (46) need to be taken
into account and from phase space considerations alone there is no reason for the existence of
precursors of antiferromagnetic bands in the 3D case. However, the existence of such bands in
3D cannot be completely excluded based on dimensional arguments alone because they occur
at finite frequencies and strictly speaking they are non-universal. In particular, as discussed in
reference [33], one expects to see precursors that look like 2D antiferromagnetic bands (shadow
bands) in the vicinity of the finite temperature phase transition in strongly anisotropic quasi-
two-dimensional material. On the other hand, such bands do not generically exist in the
almost isotropic 3D case, because even in 2D the conditions for such bands are quite stringent.
The difference between shadow bands and Hubbard bands has been discussed in the previous
subsection and the discussion of non-analyticities sometimes encountered in Fermi liquid theory
can be found in Appendix D.

5.5. Away from Half-Filling. — Close to half-filling, in the nearest-neighbor hopping
model, one can enter a renormalized classical regime with large antiferromagnetic correlation
length, even though the zero-temperature Fermi surface properties may favor incommensurate
correlations. This renormalized-classical regime with large (π, π) correlations occurs when
TX � µ0. By arguments similar to those above, one finds that in this regime one still has
precursors of antiferromagnetic bands. However, the chemical potential is in or near the lower
precursor band and the system remains metallic. The high-frequency precursor appears only
below TX at ω ≈ ε̃k+Q.

With second-neighbor hopping, the points of the Fermi surface that intersect the magnetic
Brillouin zone (hot spots) behave as does the whole Fermi surface of the nearest-neighbor
(nested) case discussed above. These questions were discussed in detail in reference [36].

5.6. The Pairing Pseudogap and Precursors of Superconducting Bands in Two

Dimensions. — As we have already pointed out above, the results for the single particle
spectra obtained for the half-filled nearest-neighbor hopping repulsive Hubbard model can be
directly applied to the corresponding attractive Hubbard model, in which case the pseudogap
opens up in the renormalized classical regime of pairing and charge fluctuations. Away from
half-filling, the symmetry between charge and pair correlations is lost and pair fluctuations
dominate, becoming infinite at the Kosterlitz-Thouless transition temperature. This temper-
ature is below the temperature at which the magnitude of the pair order parameter acquires
rigidity despite the randomness of its phase. One expects then that a pseudogap will also open
in this case when the correlation length for pairing fluctuations becomes larger than the single-
particle thermal de Broglie wavelength ξpairing > ξth = vF/T . This should occur below the
crossover temperature to the renormalized classical regime of pairing fluctuations but above
the Kosterlitz-Thouless transition temperature.
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The quantitative microscopic theory for the negative U Hubbard model will be considered
in a separate publication. By contrast with all other sections of this paper, our considerations
here will be more phenomenological. Nevertheless, they will allow us to present some analytical
results for the self-energy obtained in the critical regime dominated by pairing fluctuations.
Details of the model should not be very important since we are in a regime where everything
is dominated by long wave length fluctuations.

The derivation of Σ(k, ω) in the pairing case is a straightforward extension of what we did
in the antiferromagnetic case (see Sects. 5.1.2, 5.2 and Ref. [36]). In particular, in complete
analogy with the magnetic case, the main contribution to the self-energy in the critical regime
comes from the classical thermal fluctuations iqn = 0. Assuming some effective coupling
constant g′ between quasiparticles and pairing fluctuations, which in general can be momentum
dependent, one can write in the one loop approximation

Σcl (k, ikn) ≈ Tg′(k)

∫
d2q

(2π)2

1

ξ−2
p + q2

1

ikn + ε̃−k+q
· (64)

Here ε̃k is the electron dispersion relative to the chemical potential, and all factors in front
of integral are reabsorbed into the coupling constant g′. This expression is similar to the
expression (Eq. (55)) in the magnetic case but there are two important differences: i) instead
of ε̃k+Q+q we have now ε̃−k+q; ii) there is no minus sign in front of ε̃−k+q. The first difference
is due to the fact that superconductivity usually occurs with zero center of mass momentum
for the pair, and hence the pairing susceptibility in the normal state χp ∝ 1/(ξ−2

p + q2) must
be peaked near q = 0, (the integration variable q in equation (55) was measured relative
to Q = (π, π)). The second difference comes from the fact that we are now considering the
contribution to Σ coming from the particle-particle channel instead of the particle-hole channel.
Taking the integrals over q and using the fact that small q only will contribute we neglect the
q dependence of the coupling constant and obtain for the imaginary part of Σcl the following
expression

Σ′′(k, ω) = −
g′(k)T

4
√

(ω + ε̃−k)
2

+ v2
−kξ

−2
p

· (65)

In the renormalized classical regime the pairing correlation length ξp increases faster with
decreasing temperature than ξth = vF/T . Consequently, Σ′′(kF, 0) tends to diverge with
decreasing temperature and a pairing pseudogap in the spectral function A(kF, ω) opens up
over the complete Fermi surface, except maybe at a few points where g′(k) = 0. This is
different from the antiferromagnetic case, where the pseudogap in A(kF = kh.sp., ω) opens up
only when, so called, “hot spots” (ε̃(kh.sp. + Q) = ε̃(kh.sp.) = 0 ) exist in a given model [36].
The antiferromagnetic pseudogap opens everywhere on the Fermi surface only in the case of
perfect nesting, where all points on the Fermi surface are “hot spots”.

The real part of the self-energy can be obtained from equation (65) using the Kramers-Kronig
relation and has the form:

Σ′(k, ω) =
g′(k)T

4π
√

(ω + ε̃−k)
2

+ v2
−kξ

−2
p

ln

∣∣∣∣∣∣
ω + ε̃−k +

√
(ω + ε̃−k)

2
+ v2
−kξ

−2
p

ω + ε̃−k −
√

(ω + ε̃−k)
2

+ v2
−kξ

−2
p

∣∣∣∣∣∣ · (66)

To understand how precursors of the superconducting bands develop, let us look at Σ′(k, ω)
at frequencies |ω + ε̃−k| � v−kξ

−1
p . In this case, using inversion symmetry ε̃−k = ε̃k, one can

obtain from equation (66) the following asymptotic form

Σ′(k, ω) ≈
g′(k)

2π

T ln ξp
ω + ε̃k

· (67)
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When, ξp ∼ exp(const/T ) (see, more general case below) this form of the self-energy leads
to the usual BCS result Σ′(k, ω) ≈ ∆2 (k) /(ω + ε̃k) with the gap ∆2 (k) ≈ (g′(k)/2π)T ln ξp.
On the other hand, the imaginary part Σ′′(k, ω), equation (65), vanishes everywhere in the
T = 0 limit, except when ω = −ε̃k where it becomes infinite. The results for Σ′ and Σ′′

can thus be combined to write for the corresponding limit of the retarded self-energy ΣR =
∆2 (k) /(ω+ ε̃k + iη). This limit leads to the standard BCS expression for the normal Green’s
function when substituted back into the Dyson equation GR = 1/

(
ω + iη − ε̃k − ΣR(k, ω)

)
.

Above the transition temperature, the anomalous Green’s function remains zero since there is
no broken symmetry. The qualitative picture for the development of the pairing pseudogap
and of the precursors of superconducting bands at k = kF is illustrated in Figure 9 and in the
left part of Figure 11. While in the case of magnetic critical fluctuations these figures describe
the precursor effect in A(kF, ω) for perfect-nesting or for the “hot spots” (when such points
exist), in the case of pairing fluctuations they describe the spectra for all kF and for all fillings
where the ground state is superconducting.

We need to comment on a subtle difference between the antiferromagnetic and the pairing
precursor effects in the single particle spectra. While the magnetic order parameter has three
components and can order only at zero temperature in the two-dimensional repulsive model,
away from half-filling in the attractive model the pairing order parameter becomes the only
relevant order parameter at low temperature. Since it has only two components, a finite
temperature Kosterlitz-Thouless phase transition is then allowed in two dimensions. The
critical behavior in vicinity of this transition is given by ξp ∝ exp[const/(T − TKT)1/2] instead
of ξ ∝ exp(const/T ) as in the magnetic case. To take this properly into account one would need
a treatment of the problem that is more sophisticated than that given above. In particular,
one would have to take into account corrections to the simple form that we used for the pairing
susceptibility χp(q, 0) ∝ 1/(ξ−2

p + q2). This Lorentzian form of the susceptibility in the critical
regime is strictly valid only in the n = ∞ limit ( n is the number of the components of the
order parameter) and is, clearly, a less accurate approximation in the case of pairing fluctuations
(n = 2) than in the case of the antiferromagnetic fluctuations (n = 3). Nevertheless, we believe
that qualitatively the picture given above is correct for two reasons. First, because in the
Kosterlitz-Thouless picture the magnitude of the order parameter is locally non-zero starting
below a crossover temperature TX that is larger than the transition temperature TKT. It is only
the phase that is globally decorrelated above TKT. This means that locally the quasiparticles
are basically in a superconducting state even above TKT. A second reason to believe in the
precursor effects is that the superfluid density and the gap are finite as T → T−KT and, hence,
the two peak structure in A(kF, ω) exists even as the phase transition point is approached from
the low-temperature side. By analogy with the antiferromagnetic case, this two peak structure
should not immediately disappear when one increases the temperature slightly above TKT.

Finally, we point out that the precursor phenomenon described above has to be distin-
guished from, so-called, pre-formed pairs considered first by Nozières and Schmitt-Rink [71]
(see also [72]). These pre-formed pairs exist in any dimension when the coupling strength is
sufficiently large, while the precursor effect considered above can be caused by arbitrarily small
attractive interactions but only in two dimensions. We think that recent Monte Carlo data [73]
on the negative U = −W/2 Hubbard model illustrates the opening of the single-particle pseu-
dogap due to critical fluctuations, rather than a strong-coupling effect. In these simulations,
the drop in the density of states at the Fermi level should be accompanied by a simultaneous
rapid increase of the pairing structure factor Sp(q =0, T ). The latter must be exponential in
the infinite 2D lattice and a size analysis of Monte Carlo data similar to the one shown in
Figure 7 would be extremely helpful to clarify this issue.
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6. Absence of the Precursors of Antiferromagnetic Bands and Upper and Lower
Hubbard Bands in Eliashberg-Type Self-Consistent Theories

In this section, we explain why the theories that use self-consistent propagators but neglect the
corresponding frequency-dependent vertex corrections fail to see two important physical effects:
namely upper and lower Hubbard bands, as well as the precursors of antiferromagnetic bands
that we just discussed. The failure of this type of self-consistent schemes to correctly predict
upper and lower Hubbard bands has been realized a long time ago in the context of calculations
in infinite dimension [11, 74]. While one may brush aside this failure by claiming that high-
energy phenomena are not so relevant to low-energy physics, we show that in fact these schemes
also fail to reproduce the low-energy pseudogap and the precursors of antiferromagnetic bands
for essentially the same reasons that they fail to see Hubbard bands. It is thus useful to start
by a discussion of the better understood phenomenon of upper and lower Hubbard bands and
then to move to precursors of antiferromagnetic bands.

6.1. Why Eliashberg-Type Self-Consistency for the Electronic Self-Energy

Kills Hubbard Bands. — We first note that ordinary perturbation theory satisfies the
correct high-frequency behavior (Eq. (68)) for the self-energy namely, for kn �W

lim
ikn→∞

Σσ (k, ikn) = Un−σ +
U2n−σ (1− n−σ)

ikn
+ · · · (68)

It is the latter property that guarantees the existence of the Hubbard bands for U > W . To
see this, consider the half-filled case. In this case, n−σ = 1/2, µ = U/2 and one finds for the
spectral weight

A (k, ω) ∼
−2Σ′′(

ω − U2

4ω

)2
+ Σ′′2

(69)

which has pronounced maxima at the upper and lower Hubbard bands, namely ω = ±U/2, has
long as Σ′′ is not too large. Since these results are obtained using high-frequency asymptotics,
they are valid only when the asymptotic equation (68) has already set in when ω ∼ U/2. In
the exact theory and in ordinary perturbation theory in terms of bare Green functions G(0),
equation (68) is valid for |ω| � Wand the Hubbard bands appears as soon as U becomes larger
than W .

The fact that this simple high-frequency behavior sets in at the energy scale given by W
rather than U , even when W < U , is a non-trivial consequence of the Pauli principle. To see
this we first recall the exact result for the self-energy Σσ (k, ikn) in the atomic limit [1]

Σatomic
σ (k, ikn) = Un−σ +

U2n−σ (1− n−σ)

ikn + µ− U (1− n−σ)
· (70)

Formally, the atomic limit means that hopping is the smallest of all energy scales in the prob-
lem, including the temperature, t � T , which is not a very interesting case. However, the
same arguments that have been used to derive the expression (70) in the atomic limit can be
used to show that equation (70) is valid at any T/t when kn � W . Indeed, in the equations
of motion for two-particle correlators [1] one can neglect hopping terms when kn � W . This
is where the asymptotic behavior (70) sets in since the equations of motion then immedi-
ately lend themselves to a solution without any additional approximation for the interacting
term. This solution is possible because the Pauli principle n2

iσ = niσ allows us to collapse
three-particle correlation function which enters equation of motion to the two-particle one
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U
〈
Tτ

(
ni−σ (τi)ni−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
= U

〈
Tτ

(
ni−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
. Hence, the

expression for atomic limit (Eq. (70)) is also a general result for the self-energy that is valid
for kn �W. At half-filling n−σ = 1/2, µ = U/2 and the asymptotic (68) sets in at kn ∼W , as
was pointed out above. Away from half-filling, as long as |µ− Σ (∞)| and |µ− U (1− n−σ)|
are both much smaller than W, (they both vanish at half-filling), the asymptotic behavior will
also start at kn ∼W .

The situation is qualitatively different when one uses dressed Green functions, but does
not take into account the frequency dependence of the vertex, as it is done in FLEX (see
Eq. (E.9)) or for second-order perturbation theory with dressed G. For example, the second-
order expression for Σσ (k, ikn) in terms of full G does satisfy the asymptotics equation (68),
but it sets in too late, namely for kn � U , instead of kn � W . Indeed, when kn � W , the
equation for the self-energy at half-filling in this type of theories reduces to

Σ (ikn) =
∆2

ikn − Σ (ikn)
(71)

where ∆2 = cU2/4 with c a constant of proportionality involving the sum over all wave vectors
and Matsubara frequencies of the self-consistent dynamical susceptibilities. In a given theory
the value of c may differ from its value c = 1 obtained from the exact result (Eq. (70)), but
its always of order unity. The solution of equation (71)

Σ (ikn) =
1

2
ikn −

1

2

√
(ikn)

2 − 4∆2 (72)

has the analytically continued form

Re ΣR (ω) =
ω

2
−

ω

2 |ω|
θ (|ω| − 2∆)

√
ω2 − 4∆2 (73)

Im ΣR (ω) = −
1

2
θ (2∆− |ω|)

√
4∆2 − ω2. (74)

From this one can immediately see that a U2/ω regime exists for Re ΣR (ω) only
when |ω| � U, (with 2∆ = U).

This means that such regime sets in too late to give the Hubbard bands described by equa-
tion (69), because the Hubbard bands occur at ω = ±U/2 and for such ω the asymptotic form
ΣR ∝ U2/ω is not valid yet in FLEX and similar theories. Consequently, instead of well defined
peaks at ω = ±U/2 in the half-filled case, one obtains only long tails in the spectral function
Aσ (k, ω) , no matter how large U is [74] (see also following subsection).

This explains why there is no Hubbard bands in any theory that uses self-consistent Green’s
functions, but neglects the frequency dependence of the vertex. This is an explicit example that
illustrates what seems to be a more general phenomenon when there is no Migdal theorem for
vertex corrections: a calculation with dressed Green’s functions but no frequency dependent
vertex correction often gives worse results than a calculation done with bare Green’s functions
and a frequency independent vertex.

6.2. Why FLEX Fails to See Precursors of Antiferromagnetic Bands. — In this
subsection we describe the qualitative differences between our results and the results of FLEX
approximations given by equation (E.9) with regards to the “shadow bands” and explain why
we believe that the failure of the FLEX to reproduce these bands is an artifact of that approx-
imation. To avoid any confusion, we first clarify the terminology, because the term “shadow
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bands” has been used previously to describe different physical effects (see for details Ref. [36]).
We note that the so-called shadow features discussed in [36, 37] as well as the pseudogap in
the total density of states N(ω) = (1/N)

∑
kA (k, ω))exist in both theories and we will not

discuss them here. Instead, we concentrate on the precursors of antiferromagnetic bands in the
spectral function A (kF, ω)which correspond to two new solutions of the quasi-particle equation

ω − ε(k) + µ− Σ(k, ω) = 0. (75)

We start by recalling a simple physical argument why the precursors of antiferromagnetic bands
must exist at finite temperatures in the vicinity of the zero-temperature phase transition in
two dimensions. This can be best understood by contrasting this case with isotropic 3D case
where such precursor effect are highly unlikely (for a discussion of the strongly anisotropic case
see Sect. 5.4). Indeed, in three dimensions there is a finite temperature phase transition and
the gap is equal to zero at this temperature ∆(TN) = 0. Consequently at TN there is only one
peak in the A (kF, ω) at ω = 0 which starts to split into two peaks only below TN. Based on
this simple physical picture, one would not expect to see precursors of antiferromagnetic bands
above TN in this case. The situation is qualitatively different in two-dimensions where classical
thermal fluctuations suppress long-range order at any finite temperature while at the T = 0
phase transition the system goes directly into the ordered state with a finite gap. Clearly, the
two peak structure in A (kF, ω) at T = 0 cannot disappear as soon as we raise the temperature.

For simplicity we again consider half-filling. As we have seen in Section 5.2 two new quasi-
particle peaks do appear in the renormalized classical regime T < TX in our theory. We have
also found a pseudogap with the minimum at ω = 0 in this regime. In contrast, the numerical
solution of the FLEX equations [38] found a spectral function with a single maximum in
A (kF, ω) at ω = 0 even when χ̃RPA(q, 0) becomes strongly peaked at q = Q. With decreasing
temperature this central maximum becomes anomalously broad, but the two peak structure
does not appear. The clear deviation from the Fermi liquid is signaled by the positive sign of
∂Σ′ (kF, ω) /∂ω > 0. However the value of ∂Σ′ (kF, ω) /∂ω does not become larger than unity.
The latter would unavoidably lead to the existence of two new quasi-particle peaks away from
ω = 0 as is clear from the graphical solution of the quasiparticle equation (Eq. (75)) shown on
the bottom left panel of Figures 11.

We now explain analytically the origin of these qualitative differences in the two theories.
In our theory ∂Σ′(kF, ω)/∂ω|ω=0 ∝ Tξ2 and hence it quickly becomes larger than unity in
the renormalized classical regime ξ ∝ exp(const/T ). In addition, for ω > vFξ

−1 the real
part of the self-energy has the same behavior as in the ordered state Σ(kF, ω) ∝ ∆2/ω with
∆2 ∝ T ln ξ = const. The important point is that this asymptotic behavior Σ(kF, ω) ∝ ∆2/ω
of the self-energy already sets in for ω ∼ ∆ � vFξ

−1. It is this property that leads to the
appearance of the precursors of antiferromagnetic bands at ω = ±∆ in a manner analogous
to the appearance of the Hubbard bands in the strong coupling limit that is discussed in the
previous subsection. Let’s now try to understand analytically what happens in the FLEX
approximation. As in our theory, the main contribution to the self-energy in the strongly
fluctuating regime comes from the zero-frequency term in the Matsubara sum in the equation
for the self-energy (Eq. (54) in our theory and Eq. (E.9) in FLEX). An upper bound of the
effect of the critical spin fluctuations can be obtained by approximating T χ̃RPA(q, 0) ∝ δ(q).
Then one immediately obtains the same expression for the self-energy as the one obtained in
FLEX in the context of Hubbard bands (Eq. (71)). (The only difference is that the parameter
∆ is now defined by the zero-frequency Matsubara contribution of χ̃RPA(q, 0), rather than
by the sum over all Matsubara frequencies.) As we have already discussed in the context of
Hubbard bands, such a form for Σ does not lead to the appearance of two new quasiparticle
solution away from ω = 0 because the characteristic behavior Σ(kF, ω) ∝ ∆2/ω sets in too
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Fig. 11. — Top two panels are qualitative sketches of the spectral weight at the Fermi wave vector
at half-filling. The plots are obtained by retainig only the classical contribution to the self-energy for
T < TX using parameters corresponding to the typical U = 4, of Monte Carlo simulations. The two
bottom panels are the corresponding plots of Re Σ(ω). The left-hand side of this figure is obtained using
our approximation while the right-hand side is obtained from the FLEX-like approach. The intersection
with the 45 degree line ω in the bottom-left panel gives rise to the precursors of antiferromagnetic
bands seen right above it.

late, namely for ω � ∆. In addition, the slope of Σ′ (kF, ω) at ω → 0 does not diverge with
decreasing temperature as in our theory but instead saturates to its value given by the analog
of equation (73), i.e. ∂Σ′ (kF, ω) /∂ω < 1/2. As we mentioned above, a value larger than unity
∂Σ′ (kF, ω) /∂ω > 1 would guarantee the existence of two new solutions of the quasiparticle
equation (Eq. (75)) away from ω = 0. The right-hand side of Figure 11 illustrates clearly
what happens in a FLEX-like approach such as equation (71). The contribution of classical
fluctuations to the spectral weight does not lead to a Fermi liquid since A (kF, ω) saturates
to a finite width as temperature decreases, but nevertheless precursors of shadow bands do
not occur because ∂Σ′ (kF, ω) /∂ω is bounded below unity. (Note that the spectral weight
would not vanish so steeply at large frequencies if we had taken into account the quantum
contribution of the spin fluctuations, as in full FLEX calculations.)

We just saw that the self-consistency in the propagators without corresponding self-consisten-
cy in the vertices inhibits the existence of the shadow bands in essentially the same way as it
inhibits the existence of the Hubbard bands. It thus seems to us very likely that the absence
of the precursors of antiferromagnetic bands below TX in FLEX is an artifact. This conclusion
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can be reliably verified by comparison with Monte Carlo data despite the fact that the latter is
done for finite lattices and in the Matsubara formalism. This was discussed in more detail in
Section 5.2. Here we just note that the temperature dependence of Matsubara quantities such
as G(kF, τ = β/2) and Σ(kF, ik1) have a very characteristic form in the pseudogap regime.
For example, Σ(k, ik1) ∝ 1/(iπT ) in the pseudogap regime, while in FLEX we would expect
a much weaker temperature dependence of this quantity (the upper bound being given by the
analog of Eq. (72)).

We also would like to comment on the 1D model [75] which describes the interaction of
electrons with static spin fluctuations characterized by the susceptibility χsp ∝ δ(ω)[ξ−1/(q−
Q)2 + ξ−2]. The nice thing about this model is that it has an exact solution which shows the
development of shadow bands and of the pseudogap in A (kF, ω). A treatment similar to ours
which uses non-interacting Green’s functions in the one-loop approximation also reproduces
this feature [75]. However, the analogous approximation with dressed Green’s functions leads
to equation (71) and hence inhibits the existence of the “shadow bands” and of the pseudogap
in A (kF, ω).

In closing we comment on semantics and on the physical interpretation of some results
obtained in the FLEX approximation. The expression “conserving approximation” has been
widely used to describe FLEX calculations of the single particle properties and, in particular,
in the context of the shadow bands and of the failure of Luttinger’s theorem [37, 38, 69]. The
conserving aspect has been emphasized, but in fact the only desirable feature in the calculation
of the single-particle properties is that the self-energy Σ is obtained from a functional derivative
of the Luttinger-Ward functional Σ = δΦ/δG and hence it is guaranteed to satisfy Luttinger’s
theorem whenever appropriate. Only on the next level does this scheme lead to a calculation
of the “true” susceptibilities [24] and of collective modes that satisfy conservation laws (Ward
identities). However, these “true” susceptibilities are never substituted back in the calculation
of the self-energy and the effect of “true” collective modes on the single-particle spectrum is
an open question in FLEX. In fact, the RPA propagators χ̃RPA appearing in the self-energy
expression are different from susceptibilities from which collective modes should be computed
and further they explicitly break conservation laws, as can be seen from the fact that RPA-like
expressions χ̃RPA = χ̃0/(1 − Uχ̃0) with a dressed bubble χ̃0 have the unphysical properties
that are mentioned in equations (A.23, A.24) of Appendix A. The fact that there are in effect
two susceptibilities in the FLEX approximation leads, in our opinion, to some confusion and
incorrect physical interpretation of the results in the literature. In particular, it was argued that
the non-Fermi-liquid behavior and deviations from Luttinger theorem found in FLEX [37,38,69]
are not due to critical thermal fluctuation in the vicinity of the phase transition but are rather
the result of large U . The reasoning for such claim was that although the RPA susceptibilities
χ̃RPA is very strongly peaked at q = Q, the “true” FLEX susceptibility is not. In our opinion,
such claim could be justified only if one would substitute the “true” susceptibility back in
the calculation of Σ (for example using the exact Eq. (31)) and found that the deviation
from the Luttinger theorem and other qualitative changes in A(k, ω) increase with decreasing
temperature without almost divergent behavior of the conserving susceptibility χsp(Q, 0) and
of the static structure factor Ssp (Q) .

The Monte Carlo data in Figure 7 are also instructive since they clearly show that qualitative
changes in the single-particle spectra occur when the system enters the renormalized classical
regime with rapidly growing Ssp (Q). The fact that the FLEX “true” susceptibility does not
show such behavior at half-filling [38] tells us that it even more drastically disagrees with the
Monte Carlo data than the RPA-like χ̃ which enters the expression for self-energy. Moreover,
even away from half-filling the “true” susceptibility in FLEX at q = Q significantly underesti-
mates the strength of the spin fluctuations, as is clear from the comparison with Monte Carlo
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data in Figure 5. In our opinion the, so-called, “true susceptibility” in FLEX is the key element
in the confusion surrounding the interpretation of FLEX results for the self-energy because the
“true susceptibility” never comes in the calculation of the self-energy. For all practical pur-
poses these calculations of the self-energy should be considered as consistent with Luttinger’s
theorem at T = 0 but based on a non-conserving susceptibility. Consistency with conserva-
tion laws and consistency with Luttinger’s theorem are not identical requirements because to
satisfy rigorously Luttinger’s theorem one needs that Σ = δΦ/δG, while to have conserving
susceptibilities one needs that the irreducible vertices used in Bethe-Salpeter (Eq. (26)) should
be obtained from Γ = δ2Φ/δGδG.

7. Domain of Validity of our Approach

Our approach is not valid beyond intermediate coupling. That is perhaps best illustrated by
Figure 3 that shows that the crossover temperature first increases with U and then saturates
instead of decreasing. The decrease is expected on general grounds from the fact that at strong
coupling the tendency to antiferromagnetism should decrease roughly as J ∼ t2/U. The reason
for this failure of our approach is clear. As we know from studies in infinite dimension [11], to
account for strong-coupling effects it is necessary to include at least a frequency dependence
to the self-energy and to the corresponding irreducible vertices.

Our theory also fails at half-filling deep in the renormalized classical regime, i.e. T � TX

mainly for two reasons. First, the ansatz Usp = Ug↑↓(0), equation (40), fails in the sense that
g↑↓(0) eventually reaches zero at T → 0 because of the log2 T divergence in the irreducible
susceptibility χ0 (π, π) due to perfect nesting. The physically appropriate choice for g↑↓(0) in
the renormalized classical regime is to keep its value fixed to its crossover-temperature value
(See Fig. 6 and Sect. 4). The more serious reason why our approach fails for T � TX is that,
as we just saw, critical fluctuations destroy completely the Fermi liquid quasiparticles and lead
to a pseudogap. This invalidates our starting point. It is likely that in a more self-consistent
theory, the logarithmic divergence of the appropriate irreducible susceptibility will be cutoff
by the pseudogap. However, just a simple dressing of the Green’s function is not the correct
solution to the problem because it would make the theory non-conserving, as we discussed
in Section A.3. One needs to take into account wave vector and energy dependent vertex
corrections similar to those discussed by Schrieffer [76,77].

8. Comparisons with other Approaches

In Appendix E, we discuss in detail various theories, pointing out limitations and advantages
based on the criteria established in Appendices A.2 and A.3. More specifically, we include
in our list of desirable properties, the local Pauli principle 〈n2

↑〉 = 〈n↑〉 , the Mermin-Wagner
theorem (Eq. (A.14)), the Ward identities (Eq. (A.28)), and f -sum rule (Eq. (A.22)), one-
particle versus two-particle consistency Σσ

(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 (Eq. (44)), Luttinger’s

theorem, and the large frequency asymptotic for the self-energy (Eq. (68)), which is important
for the existence of the Hubbard bands. In the present section, we only state without proof
where each theory has strengths and weaknesses.

In standard paramagnon theories [32,46], the spin and charge fluctuations are computed by
RPA, using either bare or dressed Green’s functions. Then the fluctuations are feedback in the
self-energy. When RPA with bare Green’s functions are used for the collective modes, these
satisfy the f -sum rule, but that is the only one of our requirements that is satisfied by such
theories.



1346 JOURNAL DE PHYSIQUE I N◦11

In conserving approximation schemes [24, 26] the Mermin-Wagner theorem, the Luttinger
theorem and conservation laws are satisfied, but none of the other above requirements are
fulfilled.

In the parquet approach [25, 53], one enforces complete antisymmetry of the four point
function by writing down fully crossing-symmetric equations for these. However, in actual cal-
culations, the local Pauli principle, the Mermin Wagner theorem, and the consistency between
one and two particle properties are only approximately satisfied, while nothing enforces the
other requirements.

In our approach, the high-frequency asymptotics and Luttinger’s theorem are satisfied to a
very good degree of approximation while all other properties in our list are exactly enforced.
Let us specify the level of approximation. Luttinger’s theorem is trivially satisfied with our

initial approximation for the self-energy Σ
(0)
σ , but at the next level of approximation, Σ

(1)
σ , one

needs a new chemical potential to keep the electron density Tr[G
(1)
σ (1, 1+)] fixed. With this

new chemical potential the Fermi surface volume is preserved to a very high accuracy. Finally,
consider the high-frequency asymptotics. Since we use bare propagators, the high-frequency
asymptotics comes in at the appropriate frequency scale, namely ikn ∼W , which is crucial for
the existence of the Hubbard bands. However, the coefficient of the 1/ikn term in the high-
frequency expansion (Eq. (68)) is incorrect because our irreducible vertices Usp and Uch are
tuned to the low frequencies. If one would take into account the frequency dependence of Usp

and Uch and assume that at high frequency they become equal to the bare interaction U , then
one would recover the exact result, provided the Pauli principle in the form of equation (39) is
satisfied. The difficulty with such a procedure is that frequency dependent irreducible vertices
requires frequency dependent self-energy in the calculation of collective modes and that would
make the theory much more complicated. Yet it is, probably, the only way to extend the theory
to strong coupling.

9. Conclusion

We have presented a new simple approach [29,30] to the repulsive single-band Hubbard model.
We have also critically compared competing approaches, such as paramagnon, fluctuation ex-
change approximation, and pseudo-potential parquet approaches. Our approach is applicable
for arbitrary band structure [34] and gives us not only a quantitative description of the Hub-
bard model, but also provide us with some qualitatively new results. Let us summarize our
theory again. We first obtain spin and charge fluctuations by a self-consistent parameteriza-
tion of the two-particle effective interactions (irreducible vertices) that satisfies a number of
exact constraints usually not fulfilled by standard diagrammatic approaches to the many-body
problem. Then the influence of collective modes on single-particle properties is taken into ac-
count in such a way that single-particle properties are consistent with two-particle correlators,
which describe these collective modes. More specifically, our approach satisfies the following
constraints:

1. Spin and charge susceptibilities, through the fluctuation-dissipation theorem, satisfy the
Pauli principle in the form 〈n2

↑〉 = 〈n↑〉 as well as the local moment sum-rule, conserva-
tions laws and consistency with the equations of motion in a local-field-like approxima-
tion.

2. In two dimensions, the spin fluctuations satisfy the Mermin-Wagner theorem.

3. The effect of collective modes on single-particle properties is obtained by a paramagnon-
like formula that is consistent with the two-particle properties in the sense that
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the potential energy obtained from Tr [ΣG] is identical to that obtained from applying
the fluctuation-dissipation theorem to spin and charge susceptibilities.

4. Vertex corrections are included not only in spin and charge susceptibilities (Usp 6=Uch 6=U)
but also in the self-energy formula. In the latter case, this takes into account the fact
that there is no Migdal theorem controlling the effect of spin and charge fluctuations on
the self-energy.

The results for both single-particle and two-particle properties are in quantitative agreement
with Monte Carlo simulations for all fillings, as long as U is less than the bandwidth and T is
not much smaller than the crossover temperature TX where renormalized-classical behavior sets
in. Both quantum-critical and renormalized-classical behavior can occur in certain parameter
ranges but the critical behavior of our approach is that of the O (n) model with n→∞ [33].

The main predictions of physical significance are as follows:

1. The theory predicts a magnetic phase diagram where magnetic order persists away from
half-filling but with completely suppressed ferromagnetism.

2. In the renormalized classical regime above the zero-temperature phase transition, pre-
cursors of antiferromagnetic bands (shadow bands) appear in A (kF, ω). These precur-
sors occur when ξ > ξth (or ωSF < T ). Between these precursors of antiferromagnetic
bands a pseudogap appears at half-filling, so that the Fermi liquid quasiparticles are
completely destroyed in a wide temperature range above the zero-temperature phase
transition 0 < T < TX. The upper critical dimension for this phenomenon is three. We
stress the qualitative difference between the Hubbard bands and the precursors of antifer-
romagnetic bands and we predict that in two dimensions one may see both sets of bands
simultaneously in certain parameter ranges. This prediction is consistent with the results
of numerical simulations [68,78]. We know of only one other analytic approach [70] which
leads to similar four peak structure in the spectral function.

The zero temperature magnetic phase diagram is partly an open question because, despite the
qualitative agreement with other analytical approaches, there is still an apparent contradiction
with Monte Carlo simulations [64]. Our prediction of precursors of antiferromagnetic bands on
the other hand is in agreement with Monte Carlo simulations. Neither this effect nor upper and
lower Hubbard bands are observed in self-consistent schemes such as FLEX. This is because of
inconsistent treatment of the vertex and self-energy corrections in this approximation, as we
have explained in Section 6. However, if there was a Migdal theorem for spin fluctuations, it
would be justifiable to neglect the vertex corrections and keep only the self-energy effects as
is done in the FLEX approximation. The presence of precursors of antiferromagnetic bands in
two-dimensions is then a clear case of qualitatively new Physics that would not appear if there
was a Migdal theorem for spin fluctuations. The same is true for the Hubbard bands for large
U > W in any dimension.

We would like to state again clearly the nature of our critique of approximation schemes
which are based on using Migdal’s theorem for systems with electron-electron interactions. We
do not imply that one does not need at all to take into account the feedback of the single-
particle spectra on collective modes. The only point that we want to make here is that, based
on sum rules and comparison with Monte Carlo data, we see that frequency and momentum
dependent corrections to the self-energy and to the vertex often tend to cancel one another
and that ignoring this leads to qualitatively incorrect results, in particular, with regards to
the pseudogap. In this paper we were able to look only at the beginning of the renormalized
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classical regime when the pseudogap starts to form. The truly self-consistent treatment of
the one-particle and two-particle properties in the pseudogap regime remains an open and
very challenging problem. We hope that by extending our approach to the ordered state and
looking at how the pseudogap starts to disappear as the temperature is raised, one can better
understand how to develop a more self-consistent theory in the pseudogap regime. We now
point out how our approach can be extended in other directions.

As we mentioned in Section 5, the pseudogap and precursors of antiferromagnetic bands
in the two-dimensional repulsive Hubbard model have interesting analogs in the attractive
Hubbard model. In that model, one expects a pairing pseudogap and precursors of supercon-
ducting quasiparticle bands above Tc. At half-filling the negative and positive Hubbard models
are mapped onto one another by a canonical transformation and the present theory is directly
applicable to the attractive case. However, away from half-filling the mapping between the
two models is more complicated and the microscopic theory requires additional sum-rule for
pairing susceptibilities to find self-consistently the effective pairing interaction. This work is
now in progress.

The present approach can be also extended to stronger coupling U > W . Again the key idea
would be to parameterize the irreducible vertices, which have now to be frequency dependent,
and then use the most important sum-rules to find the parameterization coefficients. This will,
of course, require solving much more complicated self-consistent equations than in the present
approach, but we believe that the problem still can be made tractable.

Finally, we would like to make two comments about the magnetic and the pairing pseudogap
in the context of high-Tc superconductors, based on the results of our studies. First, as was
stressed in reference [36], to understand clearly the physics of the single-particle pseudogap
phenomena it is important to distinguish static short-range order from dynamical short-range
order. The former is defined by a nearly Lorentzian form of the corresponding static structure
factor S(q) ∝ 1/((q−Q)2 + ξ−2) (Q = (π, π) in magnetic case, Q = 0 in the case of pairing),
while the latter means only that the corresponding susceptibility χ(q, 0) has such a Lorentzian
form. A condition for the existence of the single particle pseudogap in the vicinity of a given
phase transition is that the corresponding short-range order is quasi-static (i.e. ωSF � T ) [36].
Experimentally, one can measure directly the dynamical spin structure factor S(q, ω), and
then obtain the static structure factor through the integral S(q) =

∫
S(q, ω)dω/(2π). Even

if the zero-frequency dynamical structure factor Ssp(q, 0) is very strongly peaked at q ∼ Q it
is possible that the static structure factor Ssp(q) is only weakly momentum dependent [36].
Thus in order to know whether one should expect to see the precursors of the antiferromagnetic
bands and the corresponding pseudogap at a given doping and temperature it is necessary to
obtain the static spin structure factor from the experimentally determined dynamical structure
factor and then analyze its momentum dependence to see both if it is peaked and if it is quasi-
two-dimensional.

The second comment that we would like to make is that both the pairing and the magnetic
single-particle pseudogap discussed above are an effect of low dimensionality and hence they
exist as long as there is a large two-dimensional fluctuating regime before the real three-
dimensional phase transition. In this context, a pairing pseudogap could exist on either side
of optimal doping [79]. The much larger temperature range over which a pseudogap appears
in the underdoped compounds suggests that, in addition to pairing fluctuations, other thermal
fluctuations (charge, spin...) prohibit finite-temperature ordering [80]. An example of this
occurs in the attractive Hubbard model where charge fluctuations push the Kosterlitz-Thouless
temperature to zero at half-filling, precisely where the crossover temperature to the pseudogap
regime is largest.
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Appendix A

Sum Rules, Ward Identities and Consistency Requirements

In this appendix, we recall well known constraints on many-body theory that follow from sum-
rules and conservation laws and comment, wherever possible, on their physical meaning and
on where commonly used approaches fail to satisfy these constraints. Although we come back
on a detailed discussion of various theories in a later appendix, we find it useful to include
some of this discussion here to motivate our approach. We consider in turn various results that
would be satisfied by any exact solution of the many-body problem. They are all consequences
of either anticommutation relations alone (Pauli principle) or of anticommutation relations
and the Heisenberg equations of motion. We describe in turn: 1) the relation between self-
energy and two-body correlation functions that embodies the details of the Hamiltonian; 2)
sum rules for one-particle properties; 3) sum rules and constraints on two-particle properties,
in particular f-sum rule and Ward identities that express conservation laws; 4) a few relations
that are crucial in Fermi liquid theory, namely Luttinger’s theorem and the forward scattering
sum rule.

A.1. Equations of Motion and the Relation between the Self-Energy Σ and

Two-Particle Properties. — The self-energy (we always mean one-particle irreducible
self-energy) is related to the potential energy, and hence to two-particle correlations through
the expression equation (44), which in the Kadanoff and Baym notation can be written as

Σσ
(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 · (A.1)

Here, the index with an overbar, 1, means that there is a sum over corresponding lattice
positions and an integral over imaginary time. The notation 1+ means that the imaginary
time implicit in 1 is τ1 + η where η is a positive infinitesimal number. Equation (A.1) is an
important consistency requirement between self-energy and double occupancy in the Hubbard
model that can easily be proven as follows. From the equations of motion for the single-particle
Green’s function (Eq. (3)) one finds[(

−
∂

∂τi
+ µ

)
δi,` + ti`

]
Gσ (r` − rj , τi − τj)

= δi,jδ (τi − τj)− U
〈
Tτ

(
c†i−σ (τi) ci−σ (τi) ciσ (τi) c

†
jσ (τj)

)〉
· (A.2)
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Using the short-hand notation in equations (3, 4) and the definition of self-energy (Dyson’s
equation) the above equation is also written in the form,

G−1
0 (1, 1)Gσ(1, 2) = δ (1− 2) + Σσ(1, 1)Gσ(1, 2). (A.3)

Comparing the last two equations, the well known relation equation (A.1) (or Eq. (44)) between
self-energy, Green’s function and potential energy follows.

So-called conserving [26] approaches to the many-body problem violate the above consistency
requirement (Eq. (44)) in the following sense. The right-hand side can be computed from the
collective modes using the fluctuation-dissipation theorem. In conserving approximations, this
gives a result that is different from what is computed directly from the left-hand side of the
equation, namely from the self-energy and from the Green’s function. In fact, all many-body
approaches satisfy the above consistency requirement at best in an approximate way. However,
it is a very important requirement and equation (44) plays a key role in our discussion. Seen
in Matsubara frequency, it is a sum rule, or an integral constraint that involves all frequencies,
large and small.

A.2. Constraints on Single-Particle Properties. — The spectral weight Aσ (k, ω) can
be interpreted as a probability of having an electron in a state (σ,k, ω) and it satisfies the
normalization sum rule ∫ ∞

−∞

dω

2π
Aσ(k, ω) =

〈{
ckσ, c

†
kσ

}〉
= 1. (A.4)

Formally this is a consequence of the jump in the Green’s function at τ = 0, as can be seen
from calculating

Gσ(k, 0−)−Gσ(k, 0+) = 1 = T
∑
ikn

(
eiknη − e−iknη

) ∫ ∞
−∞

dω

2π

Aσ(k, ω)

ikn − ω

=

∫ ∞
−∞

dω

2π
Aσ(k, ω). (A.5)

To do perturbation theory directly for the Green’s function to any finite order would require
that the interaction U be small not only in comparison with the bandwidth W but also in
comparison with the smallest Matsubara frequency ik1 = 2πT . Also, the direct perturbation
series for the Green’s function gives, after analytical continuation, poles of arbitrary high order
located at the unperturbed energies. These high-order poles are inconsistent with the simple
pole (or branch cut) structure of the Green’s function predicted by the spectral representation.
Furthermore, the high-order poles lead to a spectral weight that can be negative [81]. The
common way to get around these difficulties is to make approximations for the self-energy Σ
instead and then calculate the Green’s function using Dyson’s equation (Eq. (8)).

It is interesting to note that to satisfy the constraint equation (A.4), it suffices that Σ(k, ikn),
defined by equation (8), has a finite limit as ikn →∞. More constraints on approximations for
the self-energy may be found by continuing this line of thought. A systematic way of doing
this is to do a high-frequency expansion for both the Matsubara Green’s function and the
self-energy and to find coefficients using sum-rules. The sum-rules that we need then are [82]∫ ∞

−∞

dω

2π
ωAσ(k, ω) =

〈{
[ckσ, (H − µN)] , c†kσ

}〉
= εk − µ+ Un−σ (A.6)

∫ ∞
−∞

dω

2π
ω2Aσ(k, ω) = (εk − µ)2 + 2U(εk − µ)n−σ + U2n−σ (A.7)

where nσ = n/2 since we are in the paramagnetic state.
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Using the spectral representation (Eq. (6)) one can easily see that the above sum rules give
the coefficients of the high-frequency expansion of the Matsubara Green’s function

lim
ikn→∞

Gσ(k, ikn) =
1

ikn
+

(
1

ikn

)2 ∫
dω

2π
ωAσ(k, ω) +

(
1

ikn

)3 ∫
dω

2π
ω2Aσ(k, ω) + · · · (A.8)

The self-energy has the same analytic properties as the Green’s function. Using its high
frequency expansion in the expression for the Green’s function (Eq. (8)), one finds that the
first term in equation (A.8), leads to the requirement that the self-energy has a finite limit
at ikn → ∞. The second term fixes the value of this constant to the Hartree-Fock result,
and the last and second-term combine to give the leading term in 1/ikn of the self-energy
high-frequency expansion. In short, we find the result quoted in equation (68), namely

lim
ikn→∞

Σσ(k, ikn) = Un−σ +
U2n−σ (1− n−σ)

ikn
+ · · · (A.9)

The Kramers-Kronig relation for the self-energy

Re
[
ΣR
σ (k, ω)− ΣR

σ (k,∞)
]

= P

∫
dω′

π

Im
[
ΣR
σ (k, ω′)

]
ω′ − ω

and the high-frequency result (Eq. (A.9)) imply the following sum-rule for the imaginary part
of the self-energy

−

∫
dω′

π
Im
[
ΣR
σ (k, ω′)

]
= U2n−σ (1− n−σ) .

Important consequences of this equation are that for a given U the integrated imaginary part
of the self-energy is independent of temperature and is increasing towards half-filling. The
right-hand side of this equation is also a measure of the width of the single-particle excitation
spectrum, as can be seen from the spectral weight moments (Eqs. (A.6, A.7),

ω2 − ω2 ≡

∫ ∞
−∞

dω

2π
ω2Aσ(k, ω)−

[∫ ∞
−∞

dω

2π
ωAσ(k, ω)

]2

= U2n−σ (1− n−σ) .

An important physical point is that the asymptotic behavior (Eq. (A.9)) is a necessary condi-
tion for the existence of upper and lower Hubbard bands, as has been explained in Section 6.1.
However, it is important to realize that it is not a sufficient condition. Indeed, the following
paradox has been noticed in explicit calculations in infinite dimensions [11,74]. While ordinary
second-order perturbation theory with bare Green functions G0 reproduces correctly the ap-
pearance of the Hubbard bands with increasing U , the perturbation theory with dressed Green
function G = [G−1

0 − Σ]−1 does not. The reason for this is that although the second-order
expression for Σσ (k, ikn) in terms of full G does satisfy the asymptotics (Eq. (A.9)), it sets in
too late, namely for kn � U , instead of kn � W . The fact that the asymptotics should start
at kn ∼W even when U > W is a non-trivial consequence of the Pauli principle, as explained
in Section 6.1. Thus there are no Hubbard bands in any theory that uses self-consistent Green
functions but neglects the frequency dependence of the vertex. This is an explicit example that
illustrates what seems to be a more general phenomena: a calculation with dressed Green’s
functions but no frequency dependent vertex correction often gives worse results that the one
done with bare Green’s functions and a frequency independent vertex. We will see in the next
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subsection that this also happens in the calculation of the two-particle properties. Also, as we
have argued in Section 6, a similar situation occurs with the precursors of antiferromagnetic
bands in the renormalized classical regime in two-dimensions.

Finally, we quote two more well known sum-rules that we will need. They involve the Fermi
function f (ω) and the spectral weight. The first one follows from definition of Gσ (k, τ) and
the spectral representation

lim
τ→0−

Gσ (k, τ) =

∫
dω

2π
f (ω)Aσ (k, ω) =

〈
c†kσckσ

〉
≡ nkσ. (A.10)

The quantity nkσ is the distribution function. It is equal to the Fermi function only when the
self-energy is frequency independent. The next result, that follows simply from the equations
of motion,

lim
τ→0−

−
1

N

∑
k

∂Gσ (k, τ)

∂τ
=

1

N

∑
k

∫
dω

2π
ωf (ω)Aσ (k, ω)

=
1

N

∑
k

(εk − µ)nkσ + U 〈n↑n↓〉 (A.11)

is useful to show to what extent certain dressed-propagator approaches fail to satisfy the f -sum
rule.

A.3. Constraints on Two-Particle Properties. — For any one-band model, indepen-
dently of the Hamiltonian, the Pauli principle (anticommutation relations)〈

n2
iσ

〉
= 〈niσ〉 (A.12)

implies the following two simple identities:〈
(ni↑ ± ni↓)

2
〉

= n± 2 〈ni↑ni↓〉 · (A.13)

The correlation functions on the left-hand side are equal-time and equal-position spin and
charge correlation functions. The susceptibilities χch (ri − rj , τ) , χsp (ri − rj , τ) in equations
(17, 16) are response functions for arbitrary (ri − rj , τ) so they must reduce to the above
equal-time equal-position correlation functions when ri = rj and τ = 0. This is one special
case of the imaginary-time version of the fluctuation-dissipation theorem (Eqs. (16, 17)). This
translates into local-moment and local-charge sum-rules for the susceptibilities

T

N

∑
q

∑
iqn

χsp (q, iqn) = 2 〈n↑n↑〉 − 2 〈n↑n↓〉 = n− 2 〈n↑n↓〉 (A.14)

T

N

∑
q

∑
iqn

χch (q, iqn) = 2 〈n↑n↑〉+ 2 〈n↑n↓〉 − n
2 = n+ 2 〈n↑n↓〉 − n

2 (A.15)

where we have removed the i dependence of 〈ni↑ni↓〉 using translational invariance. The right-

hand side of the local-moment sum-rule is equal to 〈(Sz)2〉,while that of the local-charge sum
rule is equal to

〈
ρ2
〉
− n2.

If arbitrary sets of diagrams are summed, nothing can prevent the right-hand side from
taking unphysical values. For example, the Pauli principle may be violated, i.e. 〈n↑n↑〉 6= 〈n↑〉 .
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To see this, notice that when the Pauli principle is satisfied, our two sum rules equations (A.14,
A.15) lead to

T

N

∑
q

∑
iqn

[χsp (q, iqn) + χch (q, iqn)] = 2n− n2. (A.16)

It is easy to check that well known approaches to the many-body problem, such as RPA, violate
this basic requirement. Indeed, the ordinary RPA expressions for spin and charge are

χRPA
sp (q) ≡

χ0

1− U
2 χ0

(A.17)

χRPA
ch (q) ≡

χ0

1 + U
2 χ0

(A.18)

where

χ0 (q) = −2
T

N

∑
k

G(0) (k)G(0) (k + q) . (A.19)

That RPA does not satisfy the sum rule (Eq. (A.16)) already to second order in U can be
easily seen by expanding the denominators.

To satisfy the Mermin-Wagner theorem, approximate theories must also prevent 〈n↑n↓〉 from
taking unphysical values. This quantity is positive and bounded by its value for U = ∞ and
its value for non-interacting systems, namely 0 ≤ 〈n↑n↓〉 ≤ n2/4. Hence, the right-hand side of
the local-moment sum-rule (Eq. (A.14)) is contained in the interval

[
n, n− 1

2n
2
]
. Any theory

that prevents the right-hand side of the local-moment sum rule from taking infinite values
satisfies the Mermin-Wagner theorem.

Proof: Near a magnetic phase transition, the zero Matsubara-frequency component of the
spin susceptibility takes the Ornstein-Zernicke form

χsp (q + Q, 0) ∼
1

q2 + ξ−2
(A.20)

where q is measured with respect to the ordering wave vector Q and where ξ2 is the
square of the correlation length. Near its maximum, the above susceptibility is of order
ξ2 while all finite Matsubara-frequency components at the ordering wave vector are at
most of order 1/ (2πT )

2
which is much smaller than ξ2. Hence, one can keep only the

zero-Matsubara frequency contribution on the left-hand side of the local-moment sum
rule (Eq. (A.14)) obtaining

T

∫
ddq

(2π)
d

1

q2 + ξ−2
= C̃ (A.21)

where C̃ contains non-zero Matsubara frequency contributions as well as n − 2 〈n↑n↓〉 .

Since C̃ is finite, this means that in two dimensions (d = 2), it is impossible to have
ξ−2 = 0 on the left-hand side otherwise the integral would diverge logarithmically.

Finally, the f -sum rule on spin and charge susceptibilities follows as usual from the fact that the

Hamiltonian conserves particle number. Computing
〈[
ρq,

∂ρ−q

∂τ

]〉∣∣∣
τ=0

and
〈[
Sq,

∂S−q

∂τ

]〉∣∣∣
τ=0

one obtains for either charge or spin∫
dω

π
ωχ′′ch,sp (q, ω) = lim

η→0
T
∑
iqn

(
e−iqnη − eiqnη

)
iqnχch,sp (q, iqn)

=
1

N

∑
kσ

(εk+q + εk−q − 2εk)nkσ. (A.22)
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As can be seen from the spectral representations of spin and charge susceptibilities, equa-
tion (20), the quantity that obeys the f -sum rule is the coefficient of the leading term in the
1/q2

n high-frequency expansion of the susceptibilities.
The single-particle energies εk entering explicitly the right-hand side of the f -sum rule are

independent of interactions, so interactions influence the f -sum rule only very weakly through
the nkσ. In fact, in a continuum εk ∝ k2 so nkσ enters only in the form

∑
kσ nkσ = n. In this

case, the right-hand side of the f -sum rule is proportional to q2n and hence is independent
of interactions. On a lattice however, the energies cannot in general be taken out of the sum
and interactions influence the value of the right-hand side, but only through the fact that nkσ

differs from the non-interacting Fermi function fkσ. At strong-coupling, where the self-energy
is strongly frequency dependent, this difference between nkσ and fkσ becomes important.
But from weak to intermediate coupling, calculations where fkσ appears on the right-hand
side should be good approximations. In the explicit examples that we have treated, the U
dependence of the f -sum rule becomes important only close to half-filling and for U > 4,
signaling the breakdown of approximations based on frequency-independent self-energies.

While RPA-like theories that use fkσ instead of nkσ violate only weakly the f -sum rule in
the weak to intermediate coupling regime, self-consistent theories that use frequency-dependent
self-energies but no frequency-dependent vertices violate conservations laws in general, and the
f -sum rule in particular, in a much more dramatic way. The point is that susceptibilities with
a dressed bubble, χ̃RPA = χ̃0/(1 −

1
2Uχ̃0), are bad approximations because they have the

following properties, for any value of U

χ̃RPA(q = 0, iqn 6= 0) 6= 0 (A.23)∫
dω

2π
ωχ̃′′RPA (q, ω) =

1

N

∑
k,σ

(εk+q + εk−q − 2εk)nkσ + 4U (〈n↑〉 〈n↓〉 − 〈n↑n↓〉) . (A.24)

The first of these equations explicitly violates the Ward identity, equation (A.28) below, at
all frequencies, including small non-zero ones, since at zero wave vector we should have
χ(q = 0, iqn 6= 0) = 0 for all frequencies except zero. The second equation (Eq. (A.24)) violates
the f -sum rule (Eq. (A.22)) at all wave vectors, by a constant term 4U (〈n↑〉 〈n↓〉 − 〈n↑n↓〉)
which in practical calculations, say at U = 4, is of the same order as the first term, which is
the only one that should be there according to the f -sum rule.

Proof: Equations (A.23, A.24) are proven as follows. Consider the standard RPA expression
but with dressed bubbles χ̃0

χ̃RPA = χ̃0/(1−
U

2
χ̃0). (A.25)

Using the spectral representation for the Green’s function and inversion symmetry in the
Brillouin zone one finds

χ̃0 (q, iqn) =
2

N

∑
k

∫
dω

2π

∫
dω′

2π
A(k, ω)A(k + q, ω′)

(ω − ω′) (f (ω′)− f (ω))

(ω − ω′)2
+ q2

n

· (A.26)

When the bubble is not dressed, the spectral weights are delta functions so that at
q = 0 the susceptibility would vanish for all non-zero values of qn, as required by the
Ward identity. However, here because the spectral weight has a width and because the
integrand is even and positive, then the integral will not vanish, resulting in the first
anomaly (Eq. (A.23)) we mention. To prove the second equation (Eq. (A.24)), it suffices
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to remember from the spectral representation of the susceptibility (Eq. (20)) and the
derivation of the f -sum rule (Eqs. (A.22)) that we are looking for the coefficient of the
1/q2

n term in the high-frequency expansion. Given the RPA form (Eq. (A.25)), only the
numerator contributes to this limit. One obtains, for the coefficient of the 1/q2

n term,

2

N

∑
k

∫
dω

2π

∫
dω′

2π
A(k, ω)A(k + q, ω′) (ω − ω′) (f (ω′)− f (ω)) (A.27)

from which equation (A.24) follows using the sum rules for occupation number (Eq. (A.10))
and for energy (Eq. (A.11)).

Conservation laws have general consequences not only on equal-time correlation functions, as in
the f -sum rule above, but also on time-dependent correlation functions. For example, from the
Heisenberg equations of motion and anti-commutation relations, follow the Ward identities [45]∑

k

∑
σ=±1

∑
σ′=±1

(
∂

∂τ
+ (εk+q − εk)

)〈
Tτc
†
kσ (τ)σ`ck+qσ (τ) c†k′+qσ′ (τ1)σ′`ck′σ′ (τ2)

〉
= δ (τ − τ1)

∑
σ′=±1

σ′`Gσ′ (k
′, τ2 − τ) − δ (τ − τ2)

∑
σ′=±1

σ′`Gσ′ (k
′ + q, τ − τ1) (A.28)

where ` = 0 for charge, and ` = 1 for spin. The f -sum rule above (Eq. (A.22)) follows from
the above identity by simply taking τ1 = τ+

2 , summing over k′ and subtracting the two results
for τ → τ+

1 and τ → τ−1 .
We have seen in this section that there are strong cancelations for two-particle properties

between the frequency dependence of self-energy and that of the vertex corrections, so that
putting a frequency dependence in only one of them is a bad approximation. We have adopted
the Kadanoff-Baym formalism in the main text since it can be used as a guide to make ap-
proximations that satisfy conservation laws.

A.4. When there is a Fermi Surface. — When perturbation theory converges (no phase
transition) then at zero temperature T = 0 the imaginary part of the self-energy vanishes,
Σ′′σ (k, ω = 0) = 0, for all k values and the Fermi surface defined by

εk − µ− Σ′σ (k, ω = 0) = 0 (A.29)

encloses a volume that is equal to the volume enclosed by non-interacting particles

1

N

∑
k

θ (µ− εk − Σ′σ (k, 0)) =
1

N

∑
k

θ (µ0 − εk) = nσ. (A.30)

This is the content of Luttinger’s theorem [28,83]. It implies that there is a strong cancelation
between the change of the chemical potential and the change of the self-energy on the Fermi
surface. In particular, when Σ′σ (kF, 0) does not depend on k or on the direction of kF (infinite
D Hubbard model, electron gas) the change in (µ− µ0) is exactly canceled by Σ′σ (kF, 0)

µ− µ0 = Σ′σ (kF, 0) . (A.31)

Luttinger’s theorem is satisfied when

lim
T→0

∫
∂Σσ(k, iν)

∂(iν)
Gσ(k, iν)dνdk = 0. (A.32)
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Any theory that calculates its self-energy from a functional derivative of the Luttinger-Ward
functional Σ = δΦ[G]/δG will satisfy Luttinger’s theorem [28, 83]. The latter procedure re-
quires self-consistent determination of the self-energy as a function of momentum and fre-
quency Σσ (k, ikn) and is usually quite computationally involved. However, even when this
procedure to calculate the self-energy is not followed, it turns out to be rather easy to sat-
isfy this theorem to an excellent degree of approximation in the weak to intermediate cou-
pling regime. The reason for this is that any frequency-independent self-energy will preserve
Luttinger’s theorem and weak frequency dependence will not cause great harm. For the electron
gas, Luttinger [28] suggests a way to build a perturbation theory in terms of non-interacting
Green’s functions which allows to satisfy Luttinger’s theorem to very good accuracy. The
trick is that the chemical potential for the interacting electrons µ should always enter the
calculations in the form of the difference with the shift of the self-energy on the Fermi surface
G̃0 = 1/[ikn − εk + (µ − Σ′σ (kF, 0))]. The “non-interacting” Green’s function G̃0 in this for-
malism is the Green’s function of some effective non-interacting system and, in general, it is
different from both 1/ (ikn − εk + µ) and 1/ (ikn − εk + µ0). However, when T → 0 Luttinger’s
theorem requires that (µ−Σ′σ (kF, 0))→ µ0 and one can approximate G̃0 by the Green’s func-
tion for a non-interacting system of the same density G0 = 1/ (ikn − εk + µ0). In practice, one
can also have a phase transition (or crossover) at a finite temperature Tc (TX). In these cases
Luttinger’s theorem is satisfied only approximately since the zero-temperature limit cannot be
reached without a breakdown of perturbation theory. Then the relevant question is how well
it is satisfied at Tc (TX) (see also Sect. 3.2.2 for a discussion of Luttinger’s theorem in our
approach).

When Luttinger’s theorem holds, one can usually develop a Landau Fermi liquid theory. In
this approach, the Pauli principle is implemented only for momentum states near the Fermi
surface by imposing the forward scattering sum rule. This sum rule, in two dimensions, reads∑

`

[
F s
`

1 + F s
`

+
F a
`

1 + F a
`

]
= 0 (A.33)

where F s
` and F a

` are the symmetric and antisymmetric Landau parameters expanded on the
e−iθ` basis instead of the Legendre polynomial basis. Recent renormalization group analysis
has however claimed [84] that the forward scattering sum rule comes from an inaccurate use of
crossing symmetry and is not the proper way to enforce the Pauli principle. Most approaches
to the many-body problem disregard this sum rule anyway, in the same way that they disregard
the local Pauli principle.

Appendix B

Proofs of Various Formal Results

In this appendix, we give the proofs of various relations mentioned in Sections 3 and 3.2.3.

1. The general expression for the self-energy (Eq. (27)) can be obtained as follows. Use the
equations of motion and the definition of the self-energy (Eqs. (A.2, A.3)) which in the
present notation give

Σσ
(
1, 1
)
Gσ
(
1, 2
)

= −U
〈
Tτ
[
ψ+
−σ

(
1++

)
ψ−σ

(
1+
)
ψσ (1)ψ+

σ (2)
]〉

(B.1)

= −U

[
δGσ (1, 2)

δφ−σ (1, 1+)
−G−σ

(
1, 1+

)
Gσ (1, 2)

]
. (B.2)
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Substituting the equation for the three-point susceptibility (collective modes) (Eq. (26))
in this last equation and multiplying on both sides by G−1 proves [27] the expression
(Eq. (27)) for the self-energy.

2. We now show that our approach satisfies the consistency requirement between single-
particle properties and collective modes in the form of equation (48). Using our expression
(Eq. (46)) for Σ(1) and the definition of χ0 (Eq. (A.19)) we obtain

lim
τ→0−

T

N

∑
k

Σ(1)
σ (k)G(0)

σ (k)e−iknτ = Un2
−σ −

U

4

T

N

∑
q

[Uspχsp(q) + Uchχch(q)]
χ0(q)

2
· (B.3)

Using

χsp(q) − χ0 (q) =
Usp

2
χ0 (q)χsp(q) (B.4)

χ0 (q)− χch(q) =
Uch

2
χ0 (q)χch(q) (B.5)

and the local moment (Eq. (38)) and local charge (Eq. (37)) sum rules proves the result.
The result is also obvious if we follow the steps in the first part of this appendix to
deduce the self-energy expression (Eq. (31)) using the collective mode equation (Eq. (30))
adapted to our approximation.

Appendix C

Ansatz for Relation between U sp and 〈n↑n↓〉

Using the present notation and formalism, we now give a physical derivation of equation (40)
that is equivalent to the one already given using the equations of motion approach [29]. (The
latter derivation was inspired by the local field approximation of Singwi et al. [31]). Since our
considerations on collective modes are independent of the precise value of the interaction U ,
we do have to use the equations of motion, or the equivalent, to feed that information back in
the definition of irreducible vertices. The two irreducible vertices that we need are in principle
calculable from

Γσσ′δ (1− 3) δ (2− 4) δ
(
2− 1+

)
=

δΣσ (1, 2)

δGσ′ (3, 4)
=
δ
[
Σσ
(
1, 1
)
Gσ
(
1, 2
)
G−1
σ

(
2, 2
)]

δGσ′ (3, 4)
· (C.1)

The rewriting on the right-hand side has been done to take advantage of the fact that
in the Hubbard model, the equations of motion (see Eqs. (A.2, A.3)) give us the
product Σσ

(
1, 1
)
Gσ
(
1, 2
)

as the highly local four field correlation function

−U
〈
Tτ
[
ψ+
−σ (1++)ψ−σ (1+)ψσ (1)ψ+

σ

(
2
)]〉

. Ordinary RPA amounts to a Hartree-Fock fac-
toring of this correlation function. Pursuing the philosophy that the minimum number of
approximations should be done on local correlation functions, we do this factoring in such a
way that it becomes exact when all points are identical, namely when 2 = 1+. In other words,
we write

− U
〈
Tτ
[
ψ+
−σ(1++)ψ−σ(1+)ψσ(1)ψ+

σ (2)
]〉
∼ U

〈n↑ (1)n↓ (1)〉

〈n↑ (1)〉 〈n↓ (1)〉
G−σ(1, 1+)Gσ(1, 2). (C.2)
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All quantities are evaluated as functionals of G up to this point. We can now evaluate the
functional derivative

δΣσ (1, 2)

δGσ′ (3, 4)
=
δ
[
U
〈n↑(1)n↓(1)〉
〈n↑(1)〉〈n↓(1)〉G−σ (1, 1+) δ (1− 2)

]
δGσ′ (3, 4)

(C.3)

=
δ
[
U
〈n↑(1)n↓(1)〉
〈n↑(1)〉〈n↓(1)〉

]
δGσ′ (3, 4)

G−σ
(
1, 1+

)
δ (1− 2) + U

〈n↑ (1)n↓ (1)〉

〈n↑ (1)〉 〈n↓ (1)〉

δG−σ (1, 1+)

δGσ′ (3, 4)
δ (1− 2) . (C.4)

The functional derivatives are now evaluated for the actual equilibrium value of G. Hence, we
can use rotational invariance to argue that the first term is independent of σ and σ′ whereas
the last one is proportional to δ−σ,σ′ . Since Usp = Γ↑↓ − Γ↑↑, only this last term proportional
to δ−σ,σ′ contributes to Usp. To obtain this term, it suffices to note that

δG−σ (1, 1+)

δGσ′ (3, 4)
= δ−σ,σ′δ (1− 3) δ

(
4− 1+

)
(C.5)

and we obtain the desired result (Eq. (40)) for Usp.

Appendix D

Real-Frequency Analysis of the Self-Energy and Fermi Liquid Limit

It is instructive to recover the two-dimensional result for precursors of antiferromagnetic bands
using the real-frequency formalism since it also clarifies the limit in which the Fermi liquid
result is recovered. Again we neglect the contribution of charge fluctuations. Starting from
our expression for the self-energy (Eq. (46)), one uses the spectral representation for the
susceptibility and for G(0). The Matsubara frequency sums can be then done and the result is
trivially continued to real frequencies [85]. One obtains, for the contribution of classical and
quantum spin fluctuations to the self-energy in d dimensions

ΣR (k, ω) =
UUsp

4

∫
ddq

(2π)
d

∫
dω′

π
[n (ω′) + f (εk+q)]

χ′′sp (q, ω′)

ω + iη + ω′ − (εk+q − µ0)
(D.1)

where µ0 = 0 at half-filling in the nearest-neighbor model and where f is, as usual, the Fermi

function, while n (ω) =
(
eβω − 1

)−1
is the Bose-Einstein distribution. To analyze this result

in various limiting cases we need to know more about the frequency dependence of the spin
susceptibility. When the antiferromagnetic correlation length is large, the zero-frequency result
(Eq. (50)) mentioned above can be generalized to

χR
sp(q + Qd, ω) ≈ ξ2 2

Uspξ
2
0

[
1

1 + q2ξ2 − iω/ωSF

]
(D.2)

where, ωSF = D/ξ2 is the characteristic spin relaxation frequency. In the notation of reference
[33], the microscopic diffusion constant D is defined by

1

D
≡
τ0

ξ2
0

(D.3)

with the microscopic relaxation time,

τ0 =
1

χ0 (Qd)

∂χR
0 (Qd, ω)

∂iω

∣∣∣∣
ω=0

· (D.4)
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This relaxation-time is non-zero in models where the Fermi surface intersects the magnetic
Brillouin zone. Clearly, the frequency dependence of χR

sp(q + Qd, ω) is on a scale ωSF = D/ξ2.
The 1/ω decrease of χ′′sp at high-frequency is not enough to ensure that the real frequency
version of the local-moment sum rule is satisfied and the simplest way to cure this problem
is to introduce [86] a high-frequency cutoff Ωcut. The large correlation length makes the
characteristic energy of the spin fluctuations ωSF a small number (critical slowing down). We
consider in turn two limiting cases [87]. The Fermi-liquid regime appears for ωSF � T and the
non-Fermi liquid regime in the opposite (renormalized classical) regime ωSF � T.

D.1. Fermi Liquid and Nested Fermi Liquid Regime ωSF � T . — Perhaps the best
known characteristic of a Fermi liquid is that Σ′′R(kF, ω;T=0)∝ω2 and Σ′′R(kF, ω=0;T )∝T 2.
To recover this result in the regime ωSF � T far from phase transitions, we start from the
above expression (Eq. (D.1)) for the self-energy to obtain

Σ′′R (kF, ω) = −
UUsp

4

1

2vF

∫
dd−1q⊥

(2π)
d−1

∫
dω′

π

× [n (ω′) + f (ω + ω′)]χ′′sp
(
q⊥, q‖ (q⊥,kF, ω, ω

′) ;ω′
)

(D.5)

where q‖, the component of q parallel to the Fermi momentum kF, is obtained from the solution
of the equation

εk+q − µ0 = ω + ω′. (D.6)

The key to understanding the Fermi liquid versus non-Fermi liquid regime is in the relative
width in frequency of χ′′sp (q, ω′) /ω′ versus the width of the combined Bose and Fermi func-
tions. In general, the function n (ω′) + f (ω + ω′) depends on ω′ on a scale Max (ω, T ) while
far from a phase transition, the explicit frequency dependence of χ′′sp (q, ω′) /ω′ is on a scale
ωSF ∼ EF � T . Hence, in this case we can assume that χ′′sp (q, ω′) /ω′ is a constant in the fre-
quency range over which n(ω′) + f(ω+ω′) differs from zero. Also, since χ′′sp(q, ω′)/ω′ depends
on wave vector q over a scale of order qF, one can neglect the ω + ω′ dependence of q‖ ob-
tained from equation (D.6). Hence, we can approximate our expression (Eq. (D.5)) for Σ′′R by

Σ′′R (kF, ω) ' −
UUsp

4

A (kF)

2vF

∫
dω′

π
[n (ω′) + f (ω + ω′)]ω′

= −
UUsp

4

A (kF)

4vF

[
ω2 + (πT )

2
]

(D.7)

where the substitution x = eβω allowed the integral to be done exactly and where

A (kF) ≡

∫
dd−1q⊥

(2π)
d−1

lim
ω→0

χ′′sp
(
q⊥, q‖ (q⊥,kF , 0, 0) ;ω′

)
ω′

· (D.8)

In general, A depends on the orientation of the Fermi wave vector, k̂F, because it determines
the choice of parallel and perpendicular axis q⊥, q‖. The above result (Eq. (D.7)) for Σ′′R is
the well known Fermi liquid result.

There are known corrections to the Fermi liquid self-energy that come from the non-analytic
ω′/vFq behavior of χ′′sp (q, ω′) /ω′ near the ferromagnetic (zone center) wave vector. In three
dimensions [88] this non-analyticity leads to subdominant ω3 lnω corrections, while in two
dimensions it leads to the dominant ω2 lnω behavior [89,90]. In the case under consideration,
the antiferromagnetic contribution has a larger prefactor. Even when it dominates however, it
can also lead to non-analyticities in the case of a nested Fermi surface. Indeed, we note that

ImχR
0 (Qd, ω) = πNd(

ω

2
)tanh

( ω
4T

)
· (D.9)
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In two dimensions, the logarithmic divergence of the density of states Nd(
ω
2 ) at the van

Hove singularity makes the zero-frequency limit of the microscopic relaxation time (Eq. (D.4))
ill-defined, because of the logarithmic divergence at ω = 0. However, this leads only to logarith-
mic corrections. If we drop logarithmic dependencies, then for ω < T one has
∂χR

0 (Qd, ω) /∂iω
∣∣
ω∼T

∼ 1/T and this 1/T dependence of ∂χR
0 (Qd, ω) /∂iω

∣∣
ω=0

changes the

temperature dependence of Σ′′R (kF, 0) from T 2 to T as discussed in the “Nested Fermi Liquid”
approach [91].

D.2. Non-Fermi Liquid Regime ωSF � T . — Near an antiferromagnetic phase transition,
the spin-fluctuation energy becomes much smaller than temperature. This is the renormalized
classical regime. The condition ωSF � T means that χ′′sp

(
q⊥, q‖;ω

′
)

is peaked over a frequency
interval ω′ � T much narrower than the interval ω′ ∼ T over which n (ω′)+f (ω + ω′) changes.
This situation is the opposite of that encountered in the Fermi liquid regime. To evaluate Σ′′R

(Eq. (D.5)) the Fermi factor can now be neglected compared with the classical limit of the Bose
factor, T/ω′. Then the dominant contribution to Σ′′R (kF, ω) is from classical spin fluctuations

T
∫

dω′

π
1
ω′
χ′′sp = Tχ′sp ' Ssp as we see below. More specifically, we take into account that

the integral is peaked near Q = (π, π) and measure wave vector with respect to the zone
center. For simplicity we consider below the half-filled case µ0 = 0. Then, with the help of
εk+q+Q = −εk+q we approximate the equation for q‖ (Eq. (D.6)) by vFq‖ = − (ω + ω′). This
gives us for equation (D.5) the approximation

Σ′′R (kF, ω) ≈ −
UUsp

4

1

2vF

∫
dd−1q⊥

(2π)
d−1

∫
dω′

π

T

ω′
χ′′sp

(
q⊥, q‖ = −

ω + ω′

vF
;ω′
)
. (D.10)

The dependence of χ′′sp on ω′ through q‖ = −(ω+ω′)/vF may be neglected because q‖ appears
only in the combination (ξ−2 +q2

⊥+q2
‖) and in the regime ωSF � T we have ω′/vF < ωSF/vF ∼

Dξ−2/vF � ξ−1. The latter inequality is generically satisfied when ξ−1 � 1. Using

T

∫
dω′

π

1

ω′
χ′′sp

(
q⊥, q‖ = −

ω

vF
;ω′
)

= Tχ′sp

(
q⊥, q‖ = −

ω

vF
; iqn = 0

)
(D.11)

=
2

Uspξ2
0

T

ξ−2 + q2
⊥ +

(
ω
vF

)2 (D.12)

the above equation (Eq. (D.10)) for Σ′′R (kF, ω) reduces precisely to the classical contribution
found using imaginary-time formalism (Eq. (55)). As we saw in Section 5.1.1, when the condi-
tion ξ > ξth is satisfied, then this contribution is dominant and leads to
limT→0 Σ′′R (kF, 0)→∞.

Appendix E

Expanded Discussion of Other Approaches

This appendix expands in Section 8 to discuss in detail various theories, explaining the advan-
tages and disadvantages of each in the context of the sets of constraints described in Appen-
dices A.2 and A.3.

E.1. Paramagnon Theories. — In standard Paramagnon theories [32, 46], the spin and
charge fluctuations are computed by RPA, using either bare or dressed Green’s functions. Then
the fluctuations are fed back in the self-energy. In fact there is a whole variety of paramagnon
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theories. They are largely phenomenological. The reader is referred to reference [46] for a
review. We concentrate our discussion on recent versions [52] of the so-called Berk-Schrieffer
formula [92]. In this approach, infinite subsets of diagrams are summed and bare propagators
are used in the calculation of both the susceptibilities and the self-energy, the latter being given
by

ΣBS
σ (k) = Un−σ +

U

4

T

N

∑
q

[(
3UχRPA

sp (q)− 2Uχ0(q)
)

+ UχRPA
ch (q)

]
G0
σ(k + q). (E.1)

The RPA spin and charge susceptibilities have been defined in equations (A.17, A.18). Com-
paring with our self-energy formula (Eq. (46)), it is clear that here there is no vertex correction.
In addition, the factor of three in front of the spin susceptibility in equation (E.1) is supposed
to take into account the presence of both longitudinal and transverse spin waves and the
subtracted term is to avoid double-counting the term of order U2.

We can now see the advantages and disadvantages of this approach. First, note that the sus-
ceptibilities entering the Berk-Schrieffer formula are the RPA ones. As we saw in Appendix A,
these fail to satisfy both the local Pauli principle and the Mermin-Wagner theorem. Hence,
spurious phase transitions will influence the self-energy in uncontrollable ways. The collective
modes do however satisfy conservation laws since they are obtained with bare vertices and
Green’s functions containing a constant self-energy. The f -sum rule (Eqs. (A.22)) then is
satisfied without renormalization of the distribution function nk because the zeroth order self-
energy is constant. This is all in agreement with the definition of a conserving approximation
for the collective modes.

The high-energy asymptotics of the self-energy sets in at the correct energy scale kn > W in
this approach, but the second term of the large-frequency asymptotics is incorrect. Indeed, at
large values of ikn,

lim
ikn→∞

ΣBS
σ (k) = Un−σ +

U

4ikn

T

N

∑
q

[
3UχRPA

sp (q) + UχRPA
ch (q)− 2Uχ0(q)

]
+ · · · (E.2)

and the sums can be evaluated as follows using the fluctuation-dissipation theorem

T

N

∑
q

χRPA
sp (q) = 2 〈n↑n↑〉 − 2 〈n↑n↓〉 (E.3)

T

N

∑
q

χRPA
ch (q) = 2 〈n↑n↑〉+ 2 〈n↑n↓〉 − n

2 (E.4)

T

N

∑
q

χ0(q) = n−
n2

2
· (E.5)

The correlators on the right-hand side take their RPA value so they do not satisfy the Pauli
principle, i.e. 〈n↑n↑〉 6= 〈n↑〉 . Taking these results together we have

lim
ikn→∞

ΣBS
σ (k) = Un−σ +

U2

ikn

[
2 〈n↑n↑〉 − 〈n↑n↓〉 −

n

2

]
+ · · · (E.6)

This does not gives the correct asymptotic behavior (Eq. (68)) even if the Pauli principle
〈n↑n↑〉 = 〈n↑〉 were satisfied, because 〈n↑n↓〉 depends on the interaction U .
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The Paramagnon self-energy (Eq. (E.1)) also does not satisfy the consistency requirement
(Eq. (45)) between self-energy and collective modes imposed by the equations of motion. To
see this we first note that

lim
τ→0−

T

N

∑
k

ΣBS
σ (k)G(0)

σ (k) e−iknτ

= Un2
−σ −

U2

8

T

N

∑
q

[
3χRPA

sp (q) + χRPA
ch (q)− 2χ0(q)

]
χ0 (q) . (E.7)

Using this expression in the sum-rule (Eq. (45)) which relates one and two-particle correlators
and expanding both sides of this sum-rule in powers of U , one finds that it is satisfied only
up to order U2. On the other hand, if one replaces 3χsp − 2χ0 in equation (E.1) by χsp, the
sum-rule (Eq. (45)) is satisfied to all orders in U . In our opinion, the problem of enforcing
rotational invariance in approximate theories is highly non-trivial and cannot be solved simply
by adding factor of 3 in front of χsp and then subtracting 2χ0 to avoid double counting. For
more detailed discussions see reference [50] and the comments at the end of Section 3.2.2.

Luttinger’s theorem is trivially satisfied if the occupation number is calculated with the
initial constant self-energy since it gets absorbed in the chemical potential. If the occupation
number is calculated with the Green’s function that contains the Berk-Schrieffer self-energy
then Luttinger’s theorem is in general violated. It is advisable to use a new chemical potential.

E.2. Conserving Approximations (FLEX). — In the conserving approximation
schemes [26], one takes any physically motivated subset of skeleton diagrams to define a
Luttinger-Ward functional Φ. Skeleton diagrams contain fully dressed Green’s functions and
no self-energy insertions. This functional is functionally differentiated to generate a self-energy
that is then calculated self-consistently since it appears implicitly in the Green’s functions
used in the original set of diagrams. A further functional differentiation allows one to calculate
the irreducible vertices necessary to obtain the collective modes in a way that preserves Ward
identities. If one uses for the free energy the formula

lnZ = Tr [ln (−G)] + Tr (ΣG)− Φ (E.8)

then one obtains thermodynamic consistency in the sense that thermodynamic quantities ob-
tained by derivatives of the free energy are identical to quantities computed directly from the
single-particle Green’s function. For example, particle number can be obtained either from a
trace of the Green’s function or from a chemical potential derivative of the free energy. In this
scheme, Luttinger’s theorem is satisfied as long as perturbation theory converges since then
any initial guess for the Luttinger-Ward functional will satisfy Luttinger’s theorem.

FLEX refers to a particular choice of diagrams for Φ. This choice leads to the following
self-consistent expression for the self-energy

ΣBS
σ (k) = Un−σ +

U

4

T

N

∑
q

[(
3Uχ̃RPA

sp (q)− 2Uχ̃0(q)
)

+ Uχ̃RPA
ch (q)

]
Gσ(k + q). (E.9)

This expression for the self-energy does not contain vertex corrections, despite the fact that,
contrary to the electron-phonon case, Migdal’s theorem does not apply here. We have explained
in detail in Section 6.2 why this may lead to qualitatively wrong results, such as the absence
of precursors of antiferromagnetic bands and of the pseudogap in A(kF, ω) in two dimensions.

Another drawback of this approach is that it does not satisfy the Pauli principle in any
form, either local or through crossing symmetry [93]. Indeed, one would need to include
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all exchange diagrams to satisfy it. In practice this is never done. In the same way that there
is nothing to constrain the value of 〈n↑n↑〉 obtained by the fluctuation-dissipation theorem to
be equal to 〈n↑〉, there is nothing to explicitly constrain the value of 〈n↑n↓〉. Nevertheless, the
Mermin-Wagner theorem is believed to be satisfied in FLEX because the feedback through the
self-energy tends to prevent the divergence of fluctuations in low dimension [38,94]. Physically
however, this seems to be an artificial way of satisfying the Mermin-Wagner theorem since
this theorem should be valid even in localized spin systems where single-particle properties are
negligibly influenced by thermal fluctuations. We also point out that the proof of the Mermin-
Wagner theorem in n→∞ models implies that the finite temperature phase transition in two
dimensions is not simply removed by thermal fluctuations, but that it is replaced by a crossover
to the renormalized classical regime with exponentially growing susceptibility. The fact that
the conserving susceptibility in FLEX does not show such behavior [38] means that FLEX
is actually inconsistent with the generic phase space arguments responsible for the absence
of finite-temperature phase transition in two dimensions. The case of one dimension also
suggests that collective modes by themselves should suffice to guarantee the Mermin-Wagner
theorem without feedback on single-particle properties. Indeed, in one dimension one shows
by diagrammatic methods (parquet summation or renormalization) that the zero-temperature
phase transition is prohibited at the two-particle level even without self-energy effects [8].

Although, the second-order diagram is included correctly in FLEX, it does not have the cor-
rect coefficient in the 1/ikn expansion of the self-energy. More importantly, the high-frequency
behavior sets-in too late to give the Hubbard bands, as we have explained in Section 6.2. We
have also seen a case where FLEX, as judged from comparisons with Monte Carlo simulations
(Fig. 1a of Ref. [30]), does not reproduce the results of second-order perturbation theory even
when it is a good low-energy approximation.

One of the inconsistencies of conserving approximations that is seldom realized, is that the
self-energy is inconsistent with the collective modes. In other words, the consistency formula
(Eq. (44)) is not satisfied in the following sense. The explicit calculation of ΣG leads to an
estimate of U 〈n↑n↓〉 that differs from the one obtained by applying the fluctuation-dissipation
theorem to the conserving spin and charge susceptibilities.

E.3. Pseudo-Potential Parquet Approach. — In the parquet approach, one enforces
complete antisymmetry of the four point function by writing down fully crossing-symmetric
equations for these. There are three irreducible vertices, namely one for the particle-particle
channel, and one for each of the two particle-hole channels. They obey the so-called parquet
equations [95]. The Green’s functions are dressed by a self-energy which itself contains the four
point function. In this way, self-consistency between one-particle and two-particle quantities
is built-in. Solutions are possible for the one-impurity problem [96] and in one-dimension [8].
However, to solve the parquet equations in higher dimension with presently available computing
power is impossible. Bickers et al. [25,53] have formulated the parquet equations as a systematic
improvement over FLEX and have devised a way to do practical calculations by introducing
so-called pseudo-potentials. Since the main computational difficulty is in keeping the full
momentum and frequency dependence of the four point functions entering the calculation of
the self-energy, this is where the various fluctuations channels are approximated by RPA-like
forms (Eq. (A.25)) but with fully dressed propagators and an effective interaction (pseudo-
potential) instead of U . A different strategy is under development [94]. The criticism of the
present section applies only to the current pseudo-potential parquet approach [25,53].

It can be seen that one drawback of this approach at the physical level is that the use of
constant effective interactions with dressed single-particle propagators means that the fluctu-
ations used in the calculation of the self-energy do not satisfy conservation laws, as we just
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demonstrated in Section A.3. Furthermore, the pseudopotentials are determined by asking that
the susceptibilities extracted from the four-point functions in the parquet equations match the
corresponding RPA-pseudo-potential susceptibility at only one wave vector and frequency. The
choice of this matching point is arbitrary: should the match be done for the typical, the average,
or the maximal value of the susceptibility in the Brillouin zone?

As we have seen in Section 6, even if the expression for the self-energy in this approach
explicitly has the second-order perturbation theory diagram in it, this is not sufficient to ensure
that the correct high frequency asymptotic behavior starts at the appropriate frequency scale
ikn ∼ W . Nevertheless, in many cases the results of the calculations performed with this
approach are not so different from second-order perturbation theory, as can be seen from
Figure 1 of reference [30].

Going rapidly through the rest of our list of properties, we see that the consistency re-
quirement Σσ

(
1, 1
)
Gσ
(
1, 1+

)
= U 〈n↑n↓〉 is at least approximately built-in by construction.

Concerning the local-moment sum-rule and the Mermin-Wagner theorem, it has been shown
that the so-called “basic” parquet equations should have the same critical behavior as the
leading term in the 1/N expansion [97], and hence should satisfy the Mermin-Wagner theo-
rem [94]. The pseudo-potentials should not affect the self-consistency necessary to satisfy the
Mermin-Wagner theorem but the fact that they are matched at a single point might introduce
difficulties, especially if the wave-vector at which χsp becomes unstable is unknown from the
start. As far as the Pauli principle is concerned, it should be at least approximately satisfied
both locally and in momentum space. Nothing however in the approach enforces conservation
laws.

E.4. Present Approach. — The role of the above sum-rules in our approach has been
discussed in detail in the main text. Here we will discuss only a few additional points.

If we concentrate on the q = 0 properties, our spin and charge correlations behave as a special
case of the “local Fermi liquid” defined in reference [98]. A “local Fermi liquid” is a description
of q = 0 properties that applies when the self-energy, and consequently irreducible vertices,
depend only on frequency, not on momentum. In a local Fermi liquid there are only two Landau
parameters, which in our case are F a

0 = −Uspχ0 (0+, 0) /2 and F s
0 = Uchχ0 (0+, 0) /2. Unitarity

and the forward scattering sum rule, if valid, imply that there is no ferromagnetism in the
repulsive case [98], as we have found. One can check explicitly that the forward scattering sum
rule is satisfied to within about 15% in our usual Monte Carlo parameter range. However, as
discussed in Appendix A.4, the forward scattering sum-rule refers only to wave vectors on the
Fermi surface, not to the local version of the Pauli principle. Furthermore, the validity of this
sum rule has been questioned [84]. The effective mass at this level of approximation is the bare
one, as in a transitionally invariant local Fermi liquid [98]. Recall however that our microscopic
calculations are not phenomenological: they explicitly give a value for the Landau parameters.
Also, our results extend well beyond the q = 0 quantities usually considered in Fermi liquid
theory.

The quasi-particle weight Z calculated with Σ
(1)
σ can differ substantially from the initial one.

This means that if we were to calculate the susceptibility with the corresponding frequency and
momentum dependent irreducible vertices Γ(1) there would be sizeable compensation between

vertices and self-energy because our calculations with Σ
(0)
σ (Z = 1) and constant renormalized

vertices already gave excellent agreement with Monte Carlo simulations.
Finally, consider the high-frequency asymptotics. Since we use bare propagators, the high-

frequency asymptotics comes in at the appropriate frequency scale, namely ikn ∼ W and the
Hubbard bands do exist in our theory. However, the coefficient of proportionality in front
of the asymptotic form 1/ikn is incorrect. Using equations (46, A.14, A.15) we can write
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the high-frequency asymptotics in the following form

lim
ikn→∞

Σσ (k, ikn) = Un−σ +
U

ikn

[(
Usp + Uch

2

)〈
n2
−σ

〉
−Uchn

2
−σ +

(
Usp − Uch

2

)
〈n↑n↓〉

]
+ · · · (E.10)

This form is useful to understand what is necessary to obtain the quantitatively correct high-
frequency behavior. Indeed, one would recover the exact result (Eq. (68)), if one were to
take into account that: i) the irreducible vertices become equal to the bare one U at high-
frequencies; ii) the local Pauli principle

〈
n̂2
−σ

〉
= n−σ is satisfied. Contrary to most other

approaches, our theory does satisfy the local Pauli principle (Eq. (A.12)) exactly. However,
since our irreducible vertices are constant and tuned to describe the low energy physics, we
violate the first of the above requirements. It is thus clear that for a correct quantitative
description of both the low energy physics and the Hubbard bands one needs to work with
frequency-dependent irreducible vertices.
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