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Abstract. – It is shown that an analytic approach which includes vertex corrections in a
paramagnon-like self-energy can quantitatively explain the two-dimensional Hubbard model
in the weak-to-intermediate coupling regime. All parameters are determined self-consistently.
This approach clearly shows that in two dimensions Fermi-liquid quasiparticles disappear in the
finite-temperature paramagnetic state when the antiferromagnetic correlation length becomes
larger than the electronic thermal de Broglie wavelength. Quantum Monte Carlo results are
used to compare the accuracy of this approach with others.

For almost forty years, the concepts of Fermi-liquid theory have served as a basis to under-
stand interacting fermion systems. Recently, especially in the context of high-temperature
superconductors, the universal applicability of Fermi-liquid theory has been challenged. Most
studies of the stability of the Fermi liquid have been done at zero temperature. However,
in many physically interesting cases, a phase transition at some temperature Tc trivially
precludes a zero-temperature Fermi liquid. Yet the system behaves as a Fermi liquid at finite
temperature when Tc < T ¿ EF. Then the issue of how close to the phase transition one
must be to destroy the Fermi liquid quasiparticles arises. This is especially interesting in two
dimensions where the transition to a spin-density wave state (SDW) occurs only at exactly
zero temperature (Tc = TN = 0) but the system enters a renormalized classical regime (RC)
at a finite temperature TX ¿ EF, below which the correlation length grows exponentially.

In this paper, we show for the Hubbard model that the Fermi-liquid quasiparticles are
destroyed in two dimensions and replaced by a pseudogap below TX , well before the zero-
temperature phase transition. Although Monte Carlo simulations have addressed the issue of
the pseudogap on small lattices [1], the thermodynamic limit remains uncertain. Clearly, an
analytical approach is necessary to reach a definite conclusion. The development of such an
approach for the Hubbard model is a long-standing and challenging problem. Below, we first
present a new approach for the weak-to-intermediate coupling regime that compares better
with Monte Carlo data than presently available approaches for the Hubbard model [2]-[4].
The important physical advantage of our approach is that it is based on enforcing a number of
crucial sum rules instead of diagrammatic perturbative arguments that are not valid for U > t.
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After formulating the approach, we use it to show that in two dimensions spin fluctuations
do destroy Fermi-liquid quasiparticles in the paramagnetic state when the antiferromagnetic
correlation length ξ becomes larger than the thermal de Broglie wavelength of electrons
ξth = ~vF/ (πkBT ). This situation is always realized for a range of fillings, around n = 1,
where at T = 0 there is long-range order. Indeed, below TX > 0 the exponentially growing
correlation length ξ quickly overcomes ξth ∼ 1/T .

Physical approach. – Our approach has the straightforward physical interpretation of
paramagnon theories [5], [6]. These theories are physically attractive since they describe the
effect of low-lying collective modes on single-particle properties in a manner similar to that
of phonons. However, contrary to the case of phonons, the effective interactions of electrons
with spin and charge excitations are strongly renormalized (no Migdal theorem). We show
then how to take this effect into account without adjustable parameter.

We consider the one-band Hubbard model on the square lattice with unit lattice spacing,
on-site repulsion U and nearest-neighbour hopping t. We work in units where the lattice
spacing is unity, kB = 1, ~ = 1 and t = 1. The theory has a simple structure that we
explain physically below, postponing to a longer paper the formal derivation based on the
Baym-Kadanoff technique.

The calculation proceeds in two steps: we first obtain spin and charge susceptibilities, then
we inject them in the self-energy calculation. In the calculation of susceptibilities we make the
approximation that spin and charge susceptibilities χsp, χch are given by RPA-like forms but
with two different effective interactions Usp and Uch that are then determined self-consistently.
The necessity to have two different effective interactions for spin and for charge is dictated
by the Pauli exclusion principle 〈n2

σ〉 = 〈nσ〉 which implies that both χsp and χch are related
to only one local pair correlation function 〈n↑n↓〉. Indeed, using the fluctuation-dissipation
theorem in Matsubara formalism and the Pauli principle, one can write

1
βN

∑
q

χch,sp(q) =
1
βN

∑
q

χ0(q)

1 + (−1)`

2 Uch,spχ0(q)
= n+ 2 (−1)` 〈n↑n↓〉 − (1− `)n2 , (1)

where ` = 0 for charge (ch), ` = 1 for spin (sp), β ≡ 1/T , n = 〈n↑〉 + 〈n↓〉, q = (q, iqn)
with q the wave vectors of an N site lattice, iqn the Matsubara frequencies and χ0(q)
the susceptibility for non-interacting electrons. The value of 〈n↑n↓〉 may be obtained self-
consistently [7] by adding to the above set of equations the relation Usp = g↑↓(0)U , with
g↑↓(0) ≡ 〈n↑n↓〉/〈n↓〉〈n↑〉. Since the theory has an RPA-like form with bare bubble χ0, it
satisfies conservation laws, in particular the condition χsp,ch(q = 0, iqn 6= 0) = 0. As shown
in ref. [7], the above procedure reproduces both Kanamori-Brueckner screening as well as
the effect of Mermin-Wagner thermal fluctuations, giving a phase transition only at zero-
temperature in two dimensions. There is, however, a crossover temperature TX below which
the magnetic correlation length ξ grows exponentially. Quantitative agreement with Monte
Carlo simulations is obtained [7] for all fillings and temperatures in the weak-to-intermediate
coupling regime U < 8.

We now turn to the discussion of the single-particle properties. In order to be consistent
with the two-particle correlation functions, the self-energy Σσ (k) must satisfy the sum rule [8]

lim
τ→0−

1
βN

∑
k

Σσ (k)Gσ (k) exp[−iknτ ] = U 〈n↑n↓〉 (2)

that follows from the definition of Σσ (k). Here, we encounter the same key quantity 〈n↑n↓〉
that appears in the sum rule for the susceptibilities eq. (1). Using the Baym-Kadanoff tech-
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Fig. 1. – Comparison of our results for G(k, τ) ( ) with Monte Carlo data (◦), FLEX (– – –),
parquet (- - - -), and second-order perturbation theory (− · − · −), all on 8 × 8 mesh with U = 4,
kF = (π, 0). Monte Carlo data and results for FLEX and parquet are from ref. [4]. a) n = 0.875,
T = 0.25; b) n = 1, T = 0.17.

nique [9], we find the following expression for Σσ (k):

Σσ (k) = Un−σ +
U

4
T

N

∑
q

[Uspχsp(q) + Uchχch(q)]G0
σ(k + q), (3)

which satisfies eq. (2) with Gσ replaced by G0
σ on the left-hand side. This self-energy ex-

pression (3) is physically appealing since, as expected from general skeleton diagrams, one
of the vertices is the bare one, U , while the other vertex is dressed and given by Usp or
Uch depending on the type of fluctuation being exchanged. Equation (3) already gives good
agreement with Monte Carlo data but the accuracy can be improved even further by requiring
that the consistency condition (2) be satisfied with Gσ instead of G0

σ. To do so, we replace Usp

and Uch on the right-hand side of (3) by αUsp and αUch with α determined self-consistently
by eq. (2). For U < 4, we have α < 1.15. This concludes the description of the structure of
our theory.

It is important to realize that Σ given by eq. (3) cannot be substituted back into the
calculation of χsp,ch by simply replacing χ0 =G0G0 with the dressed bubble χ̃0 =GG. This
would violate conservation of spin and charge. In particular, the condition(1) χsp,ch(q=0, iqn 6=
6= 0)=0 would be violated. In the next order, one is forced to work with frequency-dependent
irreducible vertices that offset the unphysical behaviour of χ̃0 at finite frequencies.

Comparisons with other theories and with quantum Monte Carlo data. – Figure 1 a) shows
G (k,τ) for filling n = 0.875, temperature T = 0.25 and U = 4 for the wave vector on the

(1) In FLEX [2] one does substitute Σ back in the RPA-like expression with a dressed bubble
χ̃RPA = χ̃0/(1 − Uχ̃0). However, χ̃RPA cannot be interpreted as a physical susceptibility since
χ̃RPA(q = 0, iqn 6= 0) 6= 0. The true conserving χ in FLEX is different from χ̃RPA and is not
substituted back in the calculation of Σ.
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Fig. 2. – Temperature dependence of the generalized renormalization factor z̃ defined in eq. (4). Lines
are results of our calculations for infinite lattice ( ) and 16×16 mesh (−·−·−), and perturbation
theory (– – –). Symbols are Monte Carlo data from ref. [1]: N 4× 4, • 8× 8, ? 16× 16.

8 × 8 lattice which is closest to the Fermi surface, namely (π, 0). For these parameters, size
effects are negligible. Our theory is in agreement with Monte Carlo data and with the parquet
approach but in this regime second-order perturbation theory for the self-energy gives the same
result. This surprising performance of perturbation theory (see also [10]) is a consequence of
compensation between the renormalized vertices and susceptibilities (Usp < U , χsp(q) > χ0(q);
Uch > U , χch(q) < χ0(q)).

Half-filling n = 1 is an ideal situation for numerical studies of low-energy phenomena
since some of the allowed wave vectors on finite lattices lie exactly on the Fermi surface.
Figure 1 b) shows G(kF, τ) for kF = (π, 0) in a regime where the SDW correlation length is
growing exponentially. Our theory shows better agreement with Monte Carlo than previous
approaches.

Figure 2 contains our most dramatic numerical results. They address the issue of the
influence of critical fluctuations on Fermi-liquid quasiparticles. We plot

z̃ (T ) = −2G (kF, β/2) =
∫

dω
2π

A (kF, ω)
cosh (βω/2)

. (4)

This quantity z̃ (T ) is an average of the single-particle spectral weight A (kF, ω) within T ≡ 1/β
around the Fermi level (ω = 0) and it is a generalization of the usual zero-temperature
quasiparticle renormalization factor z ≡ 1/(1 − ∂Σ/∂ω). For non-interacting particles z̃ (T )
is unity. For a normal Fermi liquid it becomes equal to a constant less than unity as the
temperature decreases since the width of the quasiparticle peak scales as T 2 and hence lies
within T of the Fermi level. The quantity z̃ (T ) is the best estimate of z one can get from
Monte Carlo data for G(k, τ). Moreover z̃ (T ) gives an estimate of A (kF, ω) around the Fermi
surface even when the Fermi liquid does not exist and z 6= z̃ (T → 0).

One can clearly see from fig. 2 that while second-order perturbation theory exhibits typical
Fermi-liquid behaviour for z̃ (T ), both Monte Carlo data and a numerical evaluation of our
expression for the self-energy lead to a rapid fall-off of z̃ (T ) below TX (for [7] U = 4, TX ≈ 0.2).
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The rapid decrease of z̃ (T ) clearly suggests non–Fermi-liquid behaviour. We checked also that
our theory reproduces the Monte Carlo size dependence. The 16× 16 mesh on the figure gives
practically the same result as the thermodynamic limit (solid line).

Pseudogap. – While size effects and statistical errors make continuation of the Monte Carlo
data to real frequencies particularly difficult, in our approach we can make this continuation
analytically to show that the above effect corresponds to the disappearance of the Fermi-liquid
quasiparticle and to the opening of a pseudogap. For simplicity, we give asymptotics for n = 1
at the Fermi wave vector, where ε(kF) = 0, but similar results apply for n 6= 1 as long as there
is long-range order at T = 0.

The spin susceptibility χsp (q, 0) below TX is almost singular at the antiferromagnetic wave
vector Q = (π, π) because the energy scale δU ≡ Umf,c − Usp (Umf,c ≡ 2/χ0 (Q, 0)) associated
with the proximity to the SDW becomes exponentially small [7]. This small energy scale,
δU ¿ T , leads to the so-called renormalized classical regime for the fluctuations. Then, the
main contribution to Σ in eq. (3) comes from iqn = 0 and wave vectors (q−Q)2 ≤ ξ−2

near Q. Approximating χsp

(
q, 0
)

in eqs. (1) and (3) by its asymptotic form χsp (q, 0) ≈

≈ 2
[
Uspξ

2
0(ξ−2 + (q−Q)2)

]−1

, where ξ2
0 ≡ −1

2χ0(Q)
∂2χ0(Q)
∂q2
x

and ξ ≡ ξ0(Usp/δU)1/2, we obtain

σ̃2 =
2T
Uspξ2

0

∫
d2q

(2π)2

1
q2 + ξ−2

, (5)

while the correction to Hartree-Fock is

Σ (kF, ikn) ∼=
UT

2ξ2
0

∫
d2q

(2π)2

1
q2 + ξ−2

1
ikn − q · vF

, (6)

where σ̃2 ≡ n − 2〈n↑n↓〉 − C < 1 is the right-hand side of eq. (1) minus corrections C
that come from the sum over non-zero Matsubara frequencies (quantum effects) and from
(q−Q)2 À ξ−2.

The retarded self-energy ΣR

(
kF, ω

)
is obtained from eq. (6) by analytical continuation

ikn → ω + i0. The key point in what follows is that the 2D integrals in eqs. (5) and (6)
are divergent at small q for ξ = ∞. This is qualitatively different from higher dimensions
where similar integrals are finite. This results in two effects below TX , namely: a) ξ grows
exponentially, ξ ∼ exp[πσ̃2ξ2

0Usp/T ] and quickly becomes larger then ξth. b) The imaginary
part of the self-energy at the Fermi surface Σ′′R(kF, 0) ∝ T

∫
dd−1q⊥(q2

⊥+ξ−2)−1 is proportional
to ξ in d = 2 and hence is very large Σ′′R(kF, 0) ≈ −Uξ/(ξthξ2

0) > 1, when ξ > ξth. By
contrast, for d = 3, Σ′′R(kF, 0) ∼ −U (ln ξ) /

(
ξ2
0ξth

)
, so that the Fermi-liquid is destroyed only

in a very narrow temperature range close the Néel temperature TN. One can check that the
large Σ′′R(kF, 0) in two dimensions (for T < TX) leads to a minimum at ω = 0 in the spectral
weight A (kF , ω) ≡ −2 ImGR (kF, ω) instead of the maximum obtained in Fermi liquids. For
vF/ξ < |ω| < T , we have

A (kF, ω) ∼=
2 |ω|UT/(8ξ2

0)
[ω2 − UUspσ̃2/4]2 + [UT/(8ξ2

0)]2
. (7)

This function has two maxima(2) that correspond to precursors of the zero-temperature anti-
ferromagnetic bands (shadow bands [6]).

(2) The precise location of the maxima of A
(
kF, ω

)
can be found only numerically since eq. (7)

was obtained for |ω| < T < TX <
√
UUspσ̃/2. Also, since we start from Fermi-liquid quasiparticles,

our analysis of the critical regime is restricted to TX − T ¿ TX .
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The above analysis shows by contradiction that in the paramagnetic state below TX there
is no Fermi-liquid quasiparticle at kF. Indeed, starting from quasiparticles

(
G

(0)
σ

)
we found

that as temperature decreases Σ′′R(kF, 0) increases indefinitely instead of decreasing, in direct
contradiction with the starting hypothesis. By contrast, a self-consistent treatment where
we use in eq. (3) the full Gσ with a large Σ′′R(kF, 0) shows that, for T < TX , Σ′′R(kF, 0)
remains large in d = 2 and does not vanish as T → 0, again confirming that the system is
not a Fermi-liquid in this regime. These conclusions persist away from half-filling as long
as TX(n) > 0. In particular, we do not find a quasiparticle peak in the pseudogap when
ξ > ξth. This is different from the results inferred from a phenomenological zero-temperature
calculation [6]

(
ξth =∞

)
that physically corresponds to 1¿ ξ ¿ ξth.

Experimental prediction. – We predict that the exponential growth of the magnetic
correlation length ξ below TX will be accompanied by the appearance of precursors of SDW
bands in A (kF, ω) with no quasiparticle peak between them. By contrast with isotropic
materials, in quasi–two-dimensional materials like the cuprates, this effect should exist in a
wide temperature range, from TX (TX ¿ U . EF) to the Néel temperature TN (TX − TN ∼
102 K).
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