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A simple crossing-symmetric approximation for the fully reducible vertex is compared with Monte
Carlo simulations of the two-dimensional Hubbard model. Up to quarter-filling, in the intermediate cou-
pling regime, accuracies better than 10% are obtained for several static correlation functions, including
spin and charge, as well as the pairing channels most widely studied in the context of high-T, supercon-
ductivity. The accuracy is generally better for the pairing channels. The results shed light on the appli-
cability of the renormalized generalized-random-phase-approximation scheme, its relation to Fermi-
liquid theory, and on the regime where nontrivial effects may appear in pairing channels. The approxi-
mation under study consists in assuming that for parallel spins the fully reducible particle-particle vertex
vanishes, while for antiparallel spins it is equal to the T matrix. The fully reducible particle-hole vertex
is then obtained from the latter vertex by using crossing symmetry. This simple approximation is not
conserving but it preserves global symmetries. It suggests that Monte Carlo results for the two-
dimensional Hubbard model in small systems at low density and intermediate coupling can be interpret-
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ed using a weakly correlated Fermi-liquid picture.

1. INTRODUCTION

~ There are two broad classes of self-consistent approxi-

mations used in calculating correlation functions of
many-body systems: conserving' ™ and crossing sym-
metric.* Conserving approximations obtained from sim-
ple self-energy diagrams following the Baym-Kadanoff
approach! are not crossing symmetric® and there is no
known general scheme which guarantees that a crossing-
symmetric approximation will also be conserving. It is
known, however, that for the one-band Hubbard model,
self-consistent crossing-symmetric approximations built
on parquet equations give better agreement with Monte
Carlo calculations than self-consistent conserving approx-
imations.’

Given the complexity of the above calculations, it is
still useful to have some simpler approximation schemes
which (a) are easier to generalize to more complex models
than the nearest-neighbor Hubbard model and (b) give
more insight into the physics.

In this paper, we investigate a simple approximation
scheme which is based on crossing symmetry and which
is remarkably accurate in the low-density limit. More
specifically, we assume that for parallel spins the fully re-
ducible particle-particle vertex vanishes, while for anti-
parallel spins it is equal to the T matrix. The fully reduc-
ible particle-hole vertex is then obtained from the latter
vertex by using crossing symmetry. This simple approxi-
mation is not conserving but it preserves global sym-
metries. We show that in the intermediate-coupling re-
gime (U~1 bandwidth) most widely studied in Monte
Carlo simulations, accurate results are obtained for spin,
charge, and pairing correlation functions. Although re-
sults in the pairing channel are generally better than in
the particle-hole channels, up to about quarter-filling all
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the usual static correlation functions obtained by Monte
Carlo simulations in both the particle-hole and particle-
particle channels are reproduced to better than 10%.

There has been some controversy concerning the ex-
istence of a Fermi liquid in two dimensions, even in the
low-density limit.®° We show in an appendix that in the
low-density intermediate-coupling regime described
above, the Monte Carlo simulations are consistent with a
very weakly correlated Fermi-liquid picture. This
Fermi-liquid point of view also sheds light on an approxi-
mation scheme which was proposed earlier:'°~!2 In this
approximation, magnetic correlation functions can be
quite accurately computed even in the intermediate-
coupling regime by using the standard generalized-
random-phase-approximation (GRPA) scheme, with a re-
normalized value of the interaction U. It was proposed
that the renormalization comes from short-range T-
matrix effects, and hence may be estimated.

In Sec. II, we define our diagrammatic approach. Sec-
tion III is devoted to detailed comparisons between our
approach and Monte Carlo results for (a) particle-hole
correlation functions (density and magnetic fluctuations)
and (b) particle-particle correlation functions which ap-
pear in various pairing channels of interest in the context
of high-temperature superconductivity. Ward identities
for the Hubbard model, as well as the validity of the
GRPA approximation with renormalized U and its rela-
tion to Fermi-liquid theory, are discussed in the appen-
dices. It is also explained in the last two appendices why
the agreement for dynamical correlation functions may
not be so good. Note that in all our calculations we have
no control over long-wavelength effects!® since we are
comparing with small-system simulations. Finite-size
effects have been a problem in detecting non-Fermi-liquid
effects in one-dimensional systems,'* hence one should
remain careful in interpreting the results.

~ ©1994 The American Physical Society
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II. CROSSING-SYMMETRIC APPROXIMATION
FOR THE PARTICLE-PARTICLE
AND PARTICLE-HOLE VERTICES

We consider the two-dimensional Hubbard model,

=t 2

(c;f,cj,,+c}‘,,c,-,,)+ U npn—u3n,,
(irj):a i

(n

where the first sum is over nearest-neighbor pairs. It is
known since the work of Galitskii, !> Brueckner et al. 16
and Kanamori!” that for short-range potentials, the two-
body potential (U above) should be replaced by the T ma-
trix in computing low-energy properties. We go one step
further for the Hubbard model by approximating the ful-
ly reducible vertex by the T matrix and using this single
vertex in all channels. In this approximation, only elec-
trons of opposite spin scatter and the fully reducible ver-
tex is, in fact, irreducible in the particle-hole channel.
The fully reducible vertex then is approximated by the
particle-particle vertex illustrated diagrammatically in
Fig. 1. Analytically, we write,

I'(1,2;3,4,)=T(1+2 or 3+4)8, 5(8,,8,5—8,:5,4) ,
)

where 1=(1,1) with 1=(k,,,) standing for both the
Matsubara frequency and two-dimensional wave vector,
and 1 standing for the spin index (1 is the opposite spin).
In the above expression then, all § functions are on spin
indices. In this approximation, incoming particles scatter
only if they have opposite spins. As usual, the expression
for the T matrix is

T(142 or 3+4)

- U
1+ Upr(k1+k2,a)l+Q)2)

8(1+2—3—4) (3)

with

FIG. 1. Definition of the fully reducible vertex I" and its ap-
proximation in terms of the T matrix. The vertex vanishes
when the spins of all particles are identical. There is an extra
minus sign when two particles are exchanged in either the initial

or the final state.
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(The sum does not include the spin indices.) Here, N is
the number of sites, while 3 is the inverse temperature in
units where Boltzmann’s constant is equal to unity. In
this low-density limit, we neglect self-energy effects and
replace the Green’s function by

1

Go(k,lwn)=m L e o (5)

with the single-particle dispersion relation
&= —2t(cosk,a +cosk,a)—pu , _(6)

where a is the lattice spacing.
Our approximation for the fully reducible vertex Eq.
(2) obeys the antisymmetry relations

I'(1,2;3,4)=—T(2,1;3,4)=—T(1,2;4,3) . ™

The fully reducible particle-hole vertex which we will use
is defined by using crossing relations, namely,

T,(1,2;3,4)=—T(1,3;2,4)
==—T,(3,2;1,4) . (®)

In terms of our approximation for the fully reducible ver-
tex Eq. (2), we have explicitly

T,u(1,233,4)
=T(1+3 Qr 2+4)81,5(81’283,4_81,483,2) (9)

again with 8§ functions on spin only in this expression.
This vertex is illustrated in Fig. 2.

This set of equations completely defines our approxi-
mation. Note that it is not conserving, except for some
special cases (q=0 finite-frequency susceptibilities) which
are discussed in Appendix A where we give the Ward
identifies for the Hubbard model. One can see that our
approach is not conserving more simply by noting that in
conserving approximations the irreducible particle-hole
vertex is obtained from a functional derivative of the
self-energy! and here the self-energy vanishes. Note,
however, that the full vertex does conserve total crystal
momentum, as can be seen from the 8§ function in the 7-
matrix definition Eq. (3). The full vertex is also invariant
under global spin rotation as may be checked from Eq.
(9): it suffices to note that 81’3 is superfluous because of
the other combination of 8 functions to be able to use the
unitarity of the rotation matrices and show that the form

Ty T EN

FIG. 2. Definition of the particle-hole fully reducible vertex
in our approximation.

(2]
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of the vertex is the same in the globally rotated frame.
Finally, notice that the only momentum dependence of
the fully reducible vertex, Eq. (2), is on the total momen-
tum of the incoming or outgoing pairs. Hence, in our ap-
proximation, triplet pairs are unaffected by interactions
because of their antisymmetry in relative momentum.
For singlet pairs'with zero total momentum, on the other
hand, the only pair correlation functions which are
affected by interactions are those which transform ac-
cording to the fully symmetric representation!® (4 1g) of
the group. (s and extended-S pair correlation functions
are examples.) "

III. COMPARISONS WITH MONTE CARLO
SIMULATIONS

To check the validity of our approach, we have per-
formed determinantal Monte Carlo simulations'® on the
two-dimensional nearest-neighbor Hubbard model. We
consider separately the particle-hole and particle-particle
channels. In all the plots, we work in units where =1,
the lattice spacing a is unity, and the hopping parameter ¢
in Eq. (6) is unity. Measurements are done at each time
slice. In every other update of the full space-time lattice,
no measurement is taken. Time slices are generally of
width Ar=1 for 4X4 lattices, and of width Ar=1 for
8 X 8 lattices, corresponding to a systematic error due to
Trotter splitting which is of the order of the statistical er-
ror. Measurements are grouped in blocks to avoid corre-
lations in the estimate of the statistical error.

Even at the lowest densities we study, namely,
(n)=0.2, the Fermi energy measured from the bottom
of the band is equal, in the parabolic approximation, to
2m(n)t=~1.3t which is much larger than the highest
temperature we consider, namely, T=0.2¢. For small
systems, one also reaches the zero-temperature limit rela-
tively soon because of the discreteness of the spectrum.
In 4X4 systems, this happens around T'=t /8. We have
checked that our results still apply in this zero tempera-
ture limit.

A. Particle-hole channel

It is useful to define the Fourier transform of the
charge and the spin densities as follows:

1
p=—*‘/—2<—' Cktg0 —Pqt TPql (10)
q N = k,0¢k+q,0 | qt q | -
for the charge, and
) .
SCZ[:T]V: E”'O‘Cl’ack_*_q"a . (11)

k,o

for the spin with o =2-1. The diagrammatic resuits for
particle-hole equal-time correlation functions are com-
puted using the fluctuation-dissipation theorem which,
for the charge, for example, takes the form,

(pgp-q) —Spg?{p—g)

+odo : .
_f_w - l—e Im[)(fop(q,a)-l-m)]. (12)
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As usual, 7 is a positive infinitesimal. The explicit form
of our expression for the susceptibility x is given by
x, (1)

=xo(1)— EG(Z G2+1DTB+1+2)

ﬁzNZ
XG(3)G(3+1), (13)

where the index r stands for either spin (zz) or charge
(pp) and o,=-+1 for density while o,=—1 for spin.
The first term is the noninteracting susceptibility and is
defined in Appendix B. Here it is the longitudinal spin
susceptibility which is computed, but one can check that
the expression for the transverse spin susceptibility .
comes purely from the crossed particle-hole channel and
gives the same result (global rotation 1nvar1ance)

The T matrix has been used previously!® as the
particle-hole irreducible vertex to compute magnetic
correlations. This generates maximally crossed ladder di-
agrams and was used to justify the GRPA with renormal-
ized U approach. 1_0 In the present approximation, we
consider the 7" matrix as the fully reducible vertex, even
though it is irreducible in the particle-hole channel. We
are thus in a sense keeping only the first term of the series
which would be generated if the 7" matrix was taken as
the irreducible vertex. This is commented upon further
in Appendix C.

As a first test of the accuracy of our approximation,
consider the following identity between the spin and
charge equal-time correlation functions in a paramagnet-
ic phase:

|Il

=SS+ pgp_g) —{pg ¥ {p_g}
=2{ (PTqPT‘q> —<qu)<pT—q)} . (14)

We evaluate the left-hand side using the Monte Carlo
simulations. In our approximation one can see that this
combination of correlation functions should give the
same result as that for the noninteracting problem.
[Indeed, using Eqs. (12) and (13) on the left-hand side, the
interaction disappears; alternatively one can see that the
right-hand side reduces to the free case since we assume
the vanishing of both self-energy corrections and fully re-
ducible vertex Eq. (9) for parallel-spin particle-hole
pairs.] Figure 3 shows the results of the comparison.
Even for fillings as high as 0.6, the comparison is excel-
lent. On the other hand, one should note that this test is
not too stringent because even when the right-hand side
of Eq. (14) is evaluated for the noninteracting problem
and the left-hand side is evaluated for the interacting
problem, both sides become exactly equal when the sum
over q is performed. This may be proven by transform-
ing to position space and using ny;n;; =ny;.

A more detailed comparison of both the spin-spin and
charge-charge correlation functions, as calculated from
our approximation [Egs. (12) and (13)] appears in Fig. 4.
We introduced the additional approximation of keeping
only the zero-frequency part of the fully reducible vertex,
as discussed in Appendices B and C. The noninteracting
case is also shown in the figure to make the effect of in-
teractions more explicit. We obtain better than 10% ac-
curacy even up to roughly quarter-filling ({z ) =0.5) and



49 COMPARISONS BETWEEN MONTE CARLO SIMULATIONS AND ...

0.4 — ;
0.2
<n>=b.36
0.0‘_ T T
r X M
— U=0
L - o MonteCarlo
2.0f [ R IR L
<n>=0.94
N "0-[‘{%\\- |0
(YL A— ' AP

FIG. 3. One-half of the sum of spin and charge correlation
functions I, [see Eq. (14)] for U=4, =5, and an 8 X8 lattice as
q moves along the path in the Brillouin zone shown in the bot-
tom right-hand figure. The Monte Carlo results represent an
average over 6000 to 10000 measurements. These Monte Carlo
data are the same as those used to plot the following figure.
Within our approximation for the vertex, this sum of correla-
tion functions obtained at finite U with the Monte Carlo simula-
tions should equal the U =0 results.

T matrix approximation
®  Monte Carlo

0.4
A * X K )K
o?' 7
Xr | ‘
7 02}
A .
Z”oo? <n>=0,36 j
v o

r X M r

FIG. 4. The first two frames are results for the spin
(SZSZ,) correlation function (magnetic structure factor), the
last two for the charge {(pqp_q)—(pq)(p_q)} correlation
function (charge structure factor) as a function of q, for U=4,
B=S5, and an 8 X8 lattice. Both the T-matrix and the U =0 re-
sults are calculated for the same 8X 8 lattice at the same tem-

perature F=J. These Monte Carlo data are the same as those
used to plot the previous figure.
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the agreement is of the same order for both spin and
" “charge. Notice also that the maximum of the 1nteract1ng

system is in general dlsplaced from that in the nonin-
teractmg ‘one and that our approximation is able to

'reproduce thls quahtatlve change, which is the sngnature
"~ of 1n01p1ent pseudonestmg at an incommensurate wave

vector. One can. remark that the quantltatlve agreement

Further verifications of the domain of applicability of
this approach can be made. For example, we checked the
positivity criterion wy,'(q,@)20, for the imaginary part
X, (q,®) of the dynamlcal susceptlblhty, Eq. (13). This
condition must be valid for all q and  to ensure stablhty,
and we found that it is valid in the regime of interest to
us, that is up to intermediate coupling, low temperature,

_and up to quarter-filling. As expected from Eq. (13),

difficulties show up when the interaction. U is increased.

- For example, for U=10¢ and {n ) =0.6, positivity of the

density is no more ensured, showing that the present ap-
proach fails in the strong-coupling regime. The domain
of applicability is even smaller for attractive potentials
since the positivity criterion for the magnetic channel is
no longer satisfied for most band fillings, even in the non-
superconducting phase.

B. Particle-particle channel

The more widely studied particle-particle correlation
functions in the context of high-temperature supercon-
duct1v1ty are the equal-time autocorrelation functions

_ '(A A,) for the d-wave and extended-S-wave order pa-
" raineters. These order parameters are deﬁned by

A{L 2‘/— Eg 'V)CITCz+vl ’

where the sum oyer v runs over the neighboring sites of 7.

bital (s, extended s,d,p, . .
symmetry of the pair. For singlet order parameters, the
weight function is even in space, g*(v)=g* —v), and the
allowed spatial symmetries we consider are

S S(,V)

For triplet order peramegers the v(}eiught{ function 1s odd in
g¥v)=—g% —w), and the spatial symmetry we

space,
consider is p, (S,=0 component), namely,
gp"(v)=8vg—8v _g- It is also convenient to work in
Fourier space, a .
1
Al= 2@% Fik)efiely, (17)
where
(18)

. .is here, in general, worse than it was for the sum of the
- spin and charge correlation functions Eq. (14).

(15)

- - The value of the weight function g *(v) determines the or-
.) and spin (triplet or singlet)

’VO’
_extended s. (noted S) gs(v) -,Sv +8, o +8,,+8, 5
d: } "gd(v)=8V’2+8v,_2—8v,y—8v,~y.
N . A . . . . . (16)
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As usual, for an extended-S wave we have
F*(k)=F%k)=2[cos(k,)+cos(k,)], for a d wave
FYk)=2[cos(k,) —cos(k,)], and for a p, wave
FP(k)=2isin(k,). These form factors are orthogonal

when integrated over the whole Brillouin zone. For form
factors orthogonal on the Fermi surface, other definitions
are more appropnate ! but we shall not consider these
here. Extensive Monte Carlo studies have been done to
determine the more likely shape of the order parameter®?
including some work with finite center-of-mass momen-
tum.?® We do not explore all these possibilities. The aim
is rather to see if the T-matrix approximation can ac-
count for pair correlation functions as well as it did in the
crossed magnetic and density channels. No superconduc-
tivity is expected in the low-density regime of interest
here. Because in the T-matrix formalism only particles
with different spins interact, the fully reducible vertex is
nonzero only for certain singlet pair correlation func-
tions. Triplet pair correlation functions will not differ
from their U =0 value. ,

Just as for particle-hole correlation functions, pair
correlation functions can be related to the corresponding
susceptibilities. One must be careful that because of the
anticommunication relatlons, there is, in general, a
difference between {AfA_) and (A_Al).22 Pair correla-
tion functions are obtamed here from the appropriate
fluctuation-dissipation theorem,

ATA )= f+w ‘;7&7) T_—-—Im[xa(q =0,0+in)] .

(19)
J

(1)—

Xl D=X 5 EF"‘(Z)F“(3)G(2—1) (—
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The pair susceptibility is defined by

o do' Xal@)
XAq= 0w+n7)-f_w T o—o—in’ (20)
where
xa()=1([AL(£),A(0)]) . ‘ @1)

The imaginary part of the susceptibility can appear in the
kernel of the integral in (19) because the quantity defined
in Eq. (21) satisfies y,(£)=[xL(—2)]*.

In the triplet channels, interactions do not come in and
the susceptibility is simply

= a a * —_ _—
Xo1)= 4BNEF (QF2Q)*GR—1)G(—=2) . (22)

Note that here and in what follows, the index 1 on the
left-hand side stands for frequency since we study pairing
correlations for g=0 only. The fact that the form factors
F?% do not depend on frequency allows simplified argu-
ments to occur in (22). In Fig. 5 we plot the p-wave
correlation function as a function of doping. The solid
line represents the T-matrix prediction, which is the same
as the noninteracting result. Clearly, the Monte Carlo
data deviate from the T-matrix prediction only for fillings
of order 0.6 and larger. Note also that close to half-
filling, the correlations are reduced compared with the
noninteracting case.

The expression for the pair susceptibility in singlet
channels is given by

D)T(—1)GB—1)G(—3). (23)

Since the indices 2 and 3 do not enter the T matrix in the equation for the susceptibility (23), the two sums may be fac-
tored. After performing the Matsubara frequency sums, the expression takes the form

1—'2f(8k)

Xa(q=03iwq)= —Z_V— z [Fa(k)]z
k

28k+iﬁ)q

where the sum of ladder diagrams defined in Eq. (4) is
given by
1-2f (ek

X”p(o’mq)_ N 2 2gy o,

- (25

We now study the various cases in turn.
1. d wave [B,, symmetry (Ref. 18)]

This particular symmetry, combined with the lattice
symmetry of the energy spectrum, makes the term in cur-
ly brackets in Eq. (24) cancel. An analytical continuation
and a frequency integration then lead to the simple result

(Aha,y=-L ~ = (cosk, —cosk, f X(ey) . (26)
k

Thus, in the T-matrix approximation, (ALA,) is explicit-

1+ Ux,(0iw,)

ZF"‘( ) (24)

2e,+io ’

FIG. 5. Triplet pair correlation function (A; A, ) plotted as a
function of filling for U=4, B=6, on a 4X4 lattice. The T-
matrix result is the same as the U =0 result and is calculated on
the same 4 X4 lattice at the same temperature S=6. The Monte
Carlo results represent an average over 3X10*—10° measure-
ments. '
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FIG. 6. Singlet d-wave correlation function {A}A, ) plotted
as a function of filling for U=4, B=6. The T-matrix result is
the same as the U =0 result and is calculated on the same lattice
sizes at the same temperature S=6. The Monte Carlo results
represent an average over 3X i0*—10% measurements: (a) 4X4
lattice, (b) 8 X 8 lattice.

ly independent of the interaction strength. For a
moderate U, this is accurate not too close to half-filling as
can be seen in Fig. 6, where Monte Carlo results for
U =4t have been plotted. These calculations were done
for 4X4 and 8X8 lattices and Bt =6. The point where a
discontinuity in the slope occurs is a finite-size effect and
has also been observed in the chemical potential. It cor-
responds to an integer number of electrons on the lattice.
If U/t is increased (for example, U =101), the same level
of accuracy is maintained only for lower fillings (until
roughly (n)=0.4). These results are consistent with
those of Moreo and Scalapino® who studied in detail
various pair-field symmetries to isolate the role of the ver-
tex from self-energy effects. They compared the pair
correlation functions and the corresponding nonvertex
part of the same correlation functions obtained by Monte
Carlo simulations. For d-wave symmetry they found a
sizable difference between these two only near half-filling.
Vertex effects were unnoticeable for lower fillings, as can
also be seen from Fig. 6. Thus, for a wide range of band
fillings, d-wave pair-field correlations are unaffected by ei-
ther effective interaction or quasiparticle-renormalization
effects.

Although we did not show this in the figure, the 7-
matrix result for 40 X 40 lattices is not very different from
the 8 X 8 case. As can be seen from Fig. 6, however, very
sizable finite-size effects exist for 4 X4 systems, and this is
true in all cases we have looked at. It seems however,
that the order of magnitude of these effects is determined
mostly by the noninteracting case. It is important to per-
form the T-matrix calculation for the same system size as
the Monte Carlo simulation.

2. ;and S pairings [ A ;; symmetry (Ref. 18)]

For these orbital states the second term appearing on
the right-hand side of (24) no longer cancels and interac-
tions contribute to the pair correlation function. Per-
forming the analytical continuation iw, —w+i7 and tak-
ing the limit n—0 for X,(5(q=0,0+in) requires some
care: for finite systems, this cannot be done independent-
ly in the bracket and in the denominator

n+u pr(o w-+in)] appearing in Eq. (24). To do the fre-
quency integration over the i 1mag1nary part of the suscep-

~ tibility, as required to obtain (A,( sAs(s)?» one must lo-
«- cate numerically all the poles of the susceptibility and

< } ’// < | ’ -

3 D I A ,

\702; Y Voa! }/ .
[ /‘ B ' '.,»‘-v

then perform a sum over the 8 functions located at each

.pole. Indeed, the result of the analytical continuation for
“the imaginary part of ¥, is a Dirac comb, as for the

U=0 case, except that for U0 the § functions’ argu-

‘ments are displaced. The poles stay in a one-to-one

correspondence with the noninteracting case where they
were located at w+2g,=0. Two of these poles are
found, respectively, below and above the two-hole contin-
uum, which is bounded by min(—2¢,) and max(—2¢g,)
when the total momentum of the pair is zero. The upper
pole has the same physical origin?* as the one first report-
ed in two dimensional jellium by Engelbrecht and Ran-
deria.’ The other pole is a two-electron antibound state®
which appears because of the finite band. For a finite sys-
tem, all the poles, including the latter two collective
modes, are on the same footing and hence they do not re-
quire special treatment. We only need to be careful to in-
clude all of them. At zero temperature, note that the
two-electron antibound state does not contribute to the
frequency integral leading to the equal-time correlation
function.

For the S wave, the results appear in Fig. 7. Monte
Carlo results and those of the T-matrix approximation
are given as a function of filling. The noninteracting case
is also plotted. Comparing it with the T-matrix results,
we note that the interactions act in opposite ways de-
pending on filling: At low density, the vertex reduces
correlations, whereas it increases them at higher density,
as if the effective interaction was atiractive. For fillings
larger than (n ) ~0.6 this effective attractive interaction
is sizable. The T-matrix approximation reproduces the
Monte Carlo results over the whole range of band fillings,
including the saturation regime at high filling. There is
only a slight overestimation. The effective attractive in-
teraction was also observed by Moreo and Scalapino??
when comparing correlation functions with and without
vertex part.

Pair-field correlation functions in a way measure the
correlations that exist between two-quasiparticle hops:

0.8 T

.
BATSEG

U

A,
L 04f 3/ ]
\ :
__U=0
* T matrix
® Monte Carlo
0.0 :

0.0 <n> 1.0

FIG. 7. Singlet extended-S-wave correlation function
(ALAS) plotted as a function of filling for U=4, B=6, and a
4X 4 lattice. Both the T-matrix result and the U=0 results are
calculated for the same 4X4 lattice at the same temperature
B=6. The Monte Carlo results represent an average over
3 X 10*-10° measurements.



4112

FIG. 8. Singlet s-wave correlation function (AIA,) plotted
as a function of filling for U=4, 8=6, on a 4X4 lattice. Both
the T-matrix result and the U=0 results are calculated for the
same 4X4 lattice at the same temperature B=6. The Monte
Carlo results represent an average over 3X 10*-~10% measure-
ments.

one hop is from a site [ to another site I, the other hop is
from a neighboring site of / to a neighboring site of [’.
Thus, it may appear that a nonlocal effective interaction
(like paramagnons) would have a stronger influence on
the correlations of these jumps than a local interaction.
Surprisingly, the T-matrix approximation, which remains
a local effective interaction, gives by itself a satisfactory
account of these types of correlations in the low-density
limit. This is completely consistent with previous stud-
ies?® which explicitly showed that S-wave correlations
have very short range, making their enhancement com-
pared to the noninteracting case irrelevant for supercon-
ductivity.

The local s correlation function is also of interest. In
the one-band Hubbard model, a theorem due to Zhang27
relates extended S and local s order parameters, probably
preventing S superconductivity because s order is unlike-
ly due to local repulsion. Results for the s-pair channel
are plotted in Fig. 8. Correlations are strongly depressed
over the whole range of band ﬁlhng, compared to the
noninteracting case. The T-matrix approximation goes in
the same direction but is not enough to decrease the
correlations sufficiently at large filling. Note, however,
that these correlations are already small and hence prob-
ably hard to obtain quantitatively.

IV. CONCLUSION

Equal-time correlation functions in all channels com-
pare very well with Monte Carlo simulations in the low-
density, ({n ) <0.5) intermediate-coupling (U ~4¢) limit
when the fully reducible vertex is approximated by the T
matrix in a crossing-symmetric manner This approach is
much simpler than either conserving” L2 or parquet® ap-
proaches, is physically clear, and accounts for most of the
effect of interaction in all channels and for quite a wide
range of parameters. The importance of this result, how-
ever, lies not so much in the explanation of the Monte
Carlo data as in the fact that it shows that nontrivial
effects coming from paramagnon or from strong-coupling
effects occur in Monte Carlo simulations only close to
half-filling or for values of the repulsion U much larger
than those usually studied, which are somewhat less than
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the bandwidth. Our results also show that at low density,
and in the range of coupling most widely studied in
Monte Carlo simulations, the two-dimensional Hubbard
model can most likely be described by a weakly correlat-
ed Fermi liquid, as explained further in Appendix C.
This also sheds light on the renormalized GRPA ap-
pr(igcllxz to magnetic correlations proposed previous-
ly.

As far as pairing correlations are concerned, it is also
noteworthy that close to half-filling the increase seen in
the d-wave channel by Monte Carlo simulations cannot
be accounted for by T-matrix effects. By contrast, in the
extended-S channel, the T-matrix essentially accounts for
everything. Antiparamagnon theories would suggest that
the additional correlations in the d-wave channel are re-
lated to those also seen in the magnetic channel.
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APPENDIX A:
WARD IDENTITIES FOR LATTICE ELECTRONS

The Ward identities for lattice electrons look some-
what different from the usual ones, although they are de-
rived using the standard approach. We quote these iden-
tities for reference and also because one can see explicitly
that the main approximation in the present paper violates
them, except for special cases.

First note that both charge and spin are locally con-
served quantities. Both can be combined in a shorthand
notation by defining the 2X2 matrices o¥, with o0 equal
to the identity matrix and o’ equal to the Pauli spin ma-
trices o*, o7, o? for i=1,2,3, respectively. Define the
Fourier transform of the local charge and spin densities
by

1 _ 1
Pi= vy 2 chavtseras= g Telotorrg - (AD

The last expression introduces a matrix notation. One
can derive the following local conservation law for elec-
trons having a general (arbitrary-neighbor hopping) one-
band dispersion relation &g:

%G _ __1_ e Vol ot A2
E‘—— '\/-A—T §(8k+q 8k)ck0' Ck+q . ( )
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All operators above are assumed to be at the same imagi-
nary time 7. This result applies not only to the Hubbard
model but also to any one-band Hamiltonian whose in-
teraction part commutes with the local charge and spin
operators. Even though this is not obvious from Eq.
(A2), the right-hand side does correspond to the ap-
propriate discrete generalization of the divergence of the
current operator. The Ward identities relate four-point
correlation functions and Green’s functions defined, re-
spectively, as follows:
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APY(kr,k+qr; k' +q7, k')
=(Trci(r)a”ck+q(f)c£,+q(7'1 Jove(T,)) , (A3)
Gy(7—1y)=—(T,c (r)cl(r,)) . (Ad)

As usual T is the time-ordered-product operator and Gk
is a 2X2 matrix in spin space.

Letting Tr denote a trace over spin indices, the Ward
identities may now be written explicitly:

i '
> %4—(8”‘1 gAY | =8(r—~7)Tr[G(r,—T)o*o¥]— S(T—Tz)Tr[Gk,_,_q(T—T,)U"cr“] . (AS)
k
Since in our problem there is no spin-orbit interaction _ —fleg4q)
and we are in the paramagnetic phase, the system is rota- X(q)= N Z Er—Exrqtio,
tionally invariant in spin space. This means that Gy is k*a
proportional to the identity matrix, and that the tensor 20, Sler) = flegiq) ,
AP is diagonal, with two independent components only, o N2 E Ep—Epsqtio T(k+q+k’,0)
A% and A” (independent of i, and different from each oth- ’ 4 ‘
er when the interaction is nonzero). The right-hand side f () —f(Ep+q) 7 (B1)

of this last equation can then be simplified further by us-
ing trace identities for the Pauli matrices. The fact that
there are just two independent Ward identities in our
problem is easy to understand by noticing that the func-
tional form of the Hamiltonian implies that the number
of spin-up electrons and the number of spin-down elec-
trons are separately conserved, corresponding to two in-
dependent conservation laws.

Note that if one sets 7; equal to 7,, then the right-hand
side of Eq. (A5) vanishes when q=0. Leaving the Matsu-
bara frequency corresponding to q different from zero,
and summing over k’, one then easily sees from Eq. (A5)
that this proves that the finite-frequency charge or spin
susceptibilities vanish at q=0. This is a well-known fact
which follows from the global conservation laws. In the
case where the frequency dependence of the T matrix is
neglected, our approximation also satisfies this require-
ment, as can be seen by using the explicit expressions in
Appendix B.

APPENDIX B:
PARTICLE-HOLE CORRELATION FUNCTIONS

To make the evaluation of the charge and spin correla-
tion functions more tractable, we introduce one further
approximation, namely that the fully reducible vertex T
appearing in Eq. (13) can be approximated by its value at
zero Matsubara frequency. This is a physically motivat-
ed approximation often used in paramagnon® or induced-
interaction?® theories, for example. It is also consistent
with Fermi-liquid ideas® according to which all particles
that scatter are very close to the Fermi surface. With
this approximation, the sums over Matsubara frequencies
can be performed to obtain, from Eq. (13),

ek EpqTiog

The first term on the right-hand side is the zeroth-order
Lindhard function Y, appearing in Eq. (13). Also, 7
stands for either charge or spin and o,=+1 for density
while o, = —1 for spin. In performing the analytical con-
tinuation to compute the imaginary part, the case
€x " Ek+q— Ek " Ek'+q Needs to be handled separately. In
fact, the double pole does not lead to unphysical results
only because an integral over frequency is performed.
For a susceptibility this double pole would not be physi-
cal, as can be checked from the Lehmann representation.
Integrating the imaginary part with the appropriate Bose
factor [Eq. (12)] to obtain the correlation functions, we
find

<S§S5q>=SO_Sl _Sz > (Bz)
(pqp-q? —{pd{p_g?=8o+S+S,, - - (B3
where

So=23 flel1—f(eg)] » (B4)

N < 7 7

=—i§ {f (eI —fleg i )} S (o) = flep 4 q)}

N* & & Ektq Er T Er4q
T(k+k'+q,0), (B5)
)

S, _—FE' {f(sk)[l_f(ek'i-q 1} {[I”f(sk')]f(ek'+q)}

X T(k+k'+q,0) , (B6)

and where the sums 3{!}. and 32} run over values of k
apd k' such that, respectively, & —g,,, &1 &4, IS
different from, or equal to, zero.
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APPENDIX C: VALIDITY OF GRPA
AND RELATION TO FERMI-LIQUID THEORY

In previous work, '°712 it was argued that good agree-

ment with Monte Carlo simulations for the magnetic
structure factor could be obtained by simply using a re-
normalized value of the Hubbard U in the standard
GRPA approach without self-energy corrections. In the
low-density limit, the origin of the renormalization of U
can be understood from the work of Galitskii,?’
Brueckner, ¢ and Kanamori:'” In this regime, the full T
matrix should replace the bare interaction U in the
GRPA sum. This was shown by Chen et al.'® by explic-
itly solving the corresponding integral equations. (We
refer to this calculation as MCL, since it is the sum of
maximally crossed ladders.) Close to half-filling, the
MCL approach becomes less accurate, ' as discussed fur-
ther by Bulut and Scalapino.'? In this appendix, we dis-
cuss the relation between the MCL approach and the
present paper. We also comment on the relation between
the MCL approach, the GRPA. with renormalized U ap-
proach, and Fermi-liquid theory. It will clearly come out
that even at intermediate coupling (U ~41), the two-
dimensional Hubbard model in the low-density limit is
accurately described by a weakly correlated Fermi liquid.

Before proceeding, we digress to explain why we call
the approach of Refs. 10—12 the GRPA approach instead
of the RPA. When the Hubbard Hamiltonian is written
out in its standard form, one already takes into account
the cancellation between direct and exchange terms for
parallel spins interacting through the zero-range poten-
tial U. In this case, the RPA approach is equivalent to
what would have been obtained from the GRPA if in-
stead the potential part of the Hamiltonian had been
written out in the form

i,o,o0'

The latter form is explicitly rotationally invariant: this
has the advantage that the Baym-Kadanoff arguments!
immediately imply that when the Hartree-Fock approxi-
mation is used for the self-energy, the GRPA (sum of
particle-hole ladders and bubbles) is conserving. In terms
of diagrams, both the transverse and longitudinal spin
susceptibilities are, in this approach, given in terms of the
same set of diagrams, namely, particle-hole ladders. This
approach can be directly used for a finite-range potential.
By contrast, the RPA approach, where bubbles are used
for longitudinal susceptibility and ladders for the trans-
verse one, is useful only for the Hubbard model. Rota-
tional invariance is lost for a finite-range potential under
any approximation for the self-energy. Again, however,
note that what we call GRPA and what is called RPA in
Refs. 10-12 are, in fact, here the same approximation be-
cause the potential is independent of momentum (zero
range in space).

Returning to the main point of this appendix, recall
that, as shown in Fig. 1, the spin and charge susceptibili-
ties may be computed from the fully reducible four-point
vertex I". Following the notation of Fig. 1 and of Refs. 5
and 30, with only minor modifications, we write the in-

ANNE-MARIE DARE, LIANG CHEN, AND A.-M. S. TREMBLAY 49

tegral equation for the fully reducible vertex I" as a func-
tion of an irreducible vertex TV in the following form (in
the finite-temperature formalism and with a sum over re-
peated indices implied):

'(1,2;3,4)="'1(1,2;3,4)+1(1,2;3,4)G(2')G(3")
XT(3,2;3,2) . (a3}

The diagrammatic form of this integral equation appears
in Fig. 9. We take advantage of momentum conservation
to define

1(1,2;3,4)=1(1,2;2—5,1+5)=T(1,2:5) , (C2)

where 5 is the momentum transfer. The last notation on
the right-hand side has the disadvantage of being ambigu-
ous with spin indices, which do not appear anymore. On
the other hand, the notation clarifies the role of the vari-
ous momenta, and any ambiguity with spin can always be
eliminated by returning to the original equation, Eq. (C1),
for the fully reducible vertex I'. This equation can now
be written in the following simplified form:

(1,2:5)=T"(1,2:5)+ (1,2 +5:5)G (2" +5)G(2")
XT(2',2:5) . (C3)

'Y is the vertex which is irreducible in the (“Landau”)
particle-hole channel which transports the momentum la-
bel 5. Following Galitskii,’> Brueckner,!® and
Kanamori,'” we use the T matrix for I''! in exactly the
manper described in the main part of this paper:
parallel-spin electrons do not interact, while for antipar-
allel spins the full Bethe-Salpeter equation is solved. It
should be noted that from a more modern
renormalization-group point of view®' this choice is
justified by the fact that, to one-loop order, these 7-
matrix effects are the only ones which come in when el-
iminating high-energy degrees of freedom to find the
fixed-point theory.

The approximation discussed in the main body of this
paper amounts to approximating the full vertex T" in Eq.
(C3) by the first term of the infinite series, namely, I'!

4 1 4 1 4 1

MOEMGENME

2 N/
A\

3 2

FIG. 9. Integral equation for the fully reducible vertex I in
terms of the vertex T'! which is irreducible in the Landau chan-
nel. This integral equation is used in the microscopic derivation
of Landau Fermi-liquid theory.
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('Y being approximated by the T matrix). In Ref. 10,
the full sefies was summed to compute the q=0
magnetic-structure factor.? The results of these two ap-
proaches are compared in Figs. 10—12. The approach of
the present paper is abbreviated by “T matrix” in the
caption, while the approach of Ref. 10, which solves the
full integral equation, is abbreviated by MCL, which
stands for “maximally crossed ladders.” First, let us
point out that, in all these figures, the oscillations as a
function of filling are a finite-size effect.’® For fillings
around roughly (n)=0.4, none of the approximations
seem to work for both spin and charge, even though any
of these approximations is, in general, closer to the
Monte Carlo results than the U=0 case.” By contrast, at
low density, all the approximations seem equally good in
the figures for the 4X4 lattice (Figs. 10 and 11). One
needs to go to the 8 X8 lattice (Fig. 12, bottom panel in
particular) to see that the solution to the full integral
equation (C3) gives a better approximation to the Monte
Carlo results than keeping only the first term T''"), Three
further points are worth making: (a) In the regions where
the agreement with the Monte Carlo calculation is good,
it does not make much difference whether one approxi-

mated the T matrix by its zero-frequency value, or if the

full Matsubara frequency dependence is taken into ac-
count. (b) Keeping only the first term, IV, of the series
for T accounts for most of the correlations which are
picked up by summing the full series (MCL). This sug-

02 ¥ 02

U=0 o : U=
MCL, zero frequency

olfl

FIG. 10. Uniform charge susceptibility times temperature (or
equivalently, static g=0 charge structure factor) as a function
of filling factor {n), computed for a 4X4 lattice at =5. In
both parts of the figure, the cases U=0 (solid line) as well as the
Monte Carlo results (points with error bars) appear. In the left
panel, the full vertex I' is approximated by the T matrix with no
self-energy effects, as in the bulk of the present paper. [This can
be seen as keeping only the first term of the series for I" in Eq.
(C3), namely, TV, and approximating I''"’ by the T matrix.]
The dotted line shows the result when the full frequency depen-
dence of the T matrix is taken into account, while in the calcula-
tion represented by the long-dashed line, the T matrix is approx-
imated by its zero-frequency value. In addition to the U=0 and
the Monte Carlo results, the right panel displays the results ob-
tained when the full integral equation (Ref. 32) for the vertex T’
in Eq. (C3) is solved (MCL approach), again replacing I''" by
the T matrix. As in the left panel, the dotted line shows the re-
sult when the full frequency dependence of the T matrix is taken
into account, while in the calculation represented by the long-
dashed line, the T matrix is approximated by its zero-frequency
value. :
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U=0 | U=0
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FIG. 11. Symbols and parameters are as in Fig. 10, but this
time it is the spin instead of the charge structure factor which is
displayed.

gests that at low density and intermediate coupling, the
small lattices are very well described by a weakly corre-
lated Fermi liquid, a point on which we elaborate below.
(c) Even if keeping only the first term, I''!), of the series
for T accounts for most of the correlations, it is clear that
this procedure cannot reproduce the zero-sound pole:
the collective-mode behavior present in frequency-
dependent correlation functions would not be well repro-
duced by the approach of the present paper.

It was pointed out in previous work'? that, at low den-
sity, it is not even necessary to solve the full integral
equation (MCL). One can replace the T matrix by a re-
normalized contact intéraction U,,, and then use the
GRPA approach with this U,,. It was also suggested
that this U,, could be computed from a Brillouin-zone

- average of the zero-frequency T matrix. In the rest of

this appendix, we show how the validity of this approach
for ks;— 0 follows from microscopic theory for a weakly

.correlated Fermi liquid.

. ‘To make the connection with microscopic Fermi-liquid

_theory, we start as in Refs. (29) or (30), from Eq. (C3) for

the fully reducible vertex I' in terms of the vertex !

*which is irreducible in the “Landau channel.” We need

to recall a few results from the microscopic approach to
Landau Fermi-liquid theory.?*3° First, the quasiparticle
form of the Green’s function product takes the form

G(2'+5)G(2)=a’GE(2'+5)G¥(2")+4(5), (C4)
where G§ has the functional form of a free-particle
Green’s function but with a renormalized mass: The
quasiparticle weight, normally called Z, here is @, while ¢
is the so-called *“‘incoherent part.” Substituting this form
of the Green’s functions in the integral equation for the
vertex (C3), one finds,?>*° by taking the limit ks—0 be-
fore the zero-frequency limit, that the corresponding lim-
iting behavior of the vertex, noted I'®, is given by

rmz(l_r(l)d))—lr(l) .
The Fermi-liquid parameters are then computed from
g;. =aI'*=a’I'(p,01,p",0l;p’,0!,p,01)
=a’I'(p,01,p",»!:0,0) . (C6)

The frequency label is zero for a particle at the Fermi
surface. Here all particles have their momenta on the

(C5)
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Fermi surface, but they are not on the energy shell.

Suppose that the liquid is weakly correlated, in the
sense that a=~1. Then the frequency sum rule for the
spectral weight implies that the incoherent part of the
Green’s function cannot be large. Taking then ¢~0 in
the expression (C5) for I'?, one finds that the Landau
function f is well approximated by

0.2 T T T —
— U=0 .

..... T mamx, zero frequency

. T matrix, sum over frequency
MCL, zero frequency

<me. - MCL, sum over frequency
Monte Carlo

Tx(0,0)

— U=0 N
-——-- T matrix, zero frequency
; T matrix, sum over frequency
MCL, zero frequency

-« MCL, sum over frequency
Y Monte Carlo

0.06} .-

T%,(0,0)

0.04}

0.0 0.1 02 0.3 0.4
<n>

FIG. 12. Uniform spin susceptibility times temperature (or
equivalently, static =0 spin structure factor) as a function of
filling factor {#n ), computed for an 8 X8 instead of a 4X4 lat-
tice as in the previous figure. The bottom panel is a blowup of
the low-density region of the top panel. The solid line is for the
U=0 case. For the two curves right above the U=0 case, the
full vertex ' is approximated by the T matrix with no self-
energy effects, as in the bulk of the present paper. [This can be
seen as keeping only the first term of the series for I" in Eq. (C3),
namely, TV, and approximating T*" by the T matrix.] The
dash-dotted line shows the result when the full frequency depen-
dence of the T'matrix is taken into account, while in the calcula-
tion represented by the long-dashed line, the T matrix is approx-
imated by its zero-frequency value. The two curves farther
from the U =0 case and closest to the Monte Carlo results are
obtained when the full integral equation (Ref. 32) for the vertex
I' in Eq. (C3) is solved (MCL approach), again replacing I'"" by
the T matrix. The dotted line shows the result when the full fre-
quency dependence of the T matrix is taken into account, while
in the calculation represented by the dash-double-dotted line,
the T matrix is approximated by its zero-frequency value.
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F=TW, (C7)

Taking the above T-matrix approximation for I", this
means that f1'=0 and that the Landau parameter /¢ pp’
necessary to compute, for example, the uniform magnetic
susceptibility, can be obtained from

U
1+x,(p+p,0)U

=—fl — D= _ _.
2f o0 = o r (€8
The momentum indices p and p’ refer, respectively, to
the momentum part of the indices 1 and 2 in the integral
equation (C3). The momentum part of the index 5 is
strictly zero, while there is left a small nonzero-frequency
part denoted o which must ultimately be taken to zero.
The uniform magnetic susceptibility is then given by
Xe= — : (C9)
o H‘f 0Xo

e

" where Xo= Xolg=0, o= 0) reduces to the two-spm dens1ty

of states at the Fermi surface at ‘low temperature. Since
[ represents the coefficient of the zeroth Legendre poly-
nomial in the expansion of f pp Over the Fermi surface,
the last result (C9) is exactly the one which would be ob-
tained from the GRPA with a renormalized value
U,,=—2f§ computed from the T-matrix expression (C8)
as follows: Take p and p’ both on the Fermi surface, and
average over the angle between both vectors. The expli-
cit expression (C8) for the Landau parameter has a finite

* limit as frequency or ‘temperature vanish, despite an ap-
-parent 1/In(w) singularity in the two- d1mens1ona1 T ma-
‘trix when one starts from high frequency.”** In practice,

it is convenient to work at small finite temperature and
zero Matsubara frequency, as described below

In Ref. 10, the average was taken over the whole Bril-
louin zone instead of over the Fermi surface. This is be-

~cause in finite Systems, there are very few points on the

Fermi surface. As shown by Groleau® (Fig. 13), it turns
out that both approaches give comparable results. To
average over the Fermi surface in Fig. 13, Groleau used a
lattice sufficiently large that at inverse temperatures
B=10/t, the result did not depend on size anymore.
Wave vectors were considered on the Fermi surface if
their energy was within 1/8 of the chemical potential,
mimicking the finite frequency appearing in the expres-
sion (C8) for the Landau parameters. Also, both p and p’
were varied around the Fermi surface to take into ac-
count the case of nonspherical Fermi surfaces. Two more
checks were made:* (a) It does not matter whether one
averages over wave vectors within 3/ or within 1/8 of
the chemical potential, indicating that the finite but low-
frequency limit has been attained. (b) Averaging directly
Xpp in the denominator of (C8) gives results very similar
to averaging the whole expression.® The latter averag-
ing procedure has the advantage that one obtains a gen-
eral expression relating the bare value of U to the renor-
malized value U,, in the GRPA approach. Here is one
final important note on this calculation of the Landau pa-
rameter corresponding to U,,: In Ref. 10, the value of
U,, was also obtained by fitting the overall Monte Carlo
data for the magnetic structure factor to a GRPA form.
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FIG. 13. Renormalized value of U,,=—2f§ as a function of
the filling factor, obtained in two ways: by averaging expression
(C8) over the Brillouin zone for an 8 X8 system at B=35 as in
Ref. 10 (solid line), and by averaging in an energy shell of thick-
ness 1/8 around the Fermi surface for a 40X 40 system at
B=10, as in Ref. 35 (dotted line). The latter approach corre-
sponds to the Fermi-liquid prescription. The figure was taken
from Ref. 35 with permission.

The value of U, obtained in this manner compares very
closely to the value of U,, found by the Fermi-liquid
prescription used by Groleau. For example, for a bare
value of U equal to 4¢, the value of U,, obtained by fitting
the Monte Carlo data is 2.2¢ at low density, in almost ex-
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act agreement with the Fermi-liquid prescription (dotted
line in Fig. 13). The Brillouin-zone average gives instead
U,,=~2.5.. We should also point out that an alternate cal-
culation of the Landau f function in two dimensions in

_the T-matrix approximation has appeared recently. It is
- shown explicitly in Ref. 34 that the appearance of a hole

antibound state’® in the 7 matrix does not invalidate

" Fermi-liquid theory.

The GRPA approach is probably valid only for weakly
correlated Fermi liquids {(a = 1) contrary to Fermi-liquid
theory, which is more general. On the other hand, when
the GRPA approach is valid, it extends Landau Fermi-
liquid theory in that it allows one to compute the magnet-
ic structure factor for all wave vectors, not only g=0. A
sufficient condition for the GRPA approach to be valid at
arbitrary q when a =1 is that I!)(1,2'+5:5) in the vertex
Eq. (C3) depend very weakly on its momentum labels
when 1 and 2’45 are both close to the Fermi surface.
Continuing to approximate I''! by the T matrix we see
that it depends only on 1+2'+5, not on 5 .separately.
Furthermore, the dependence on the precise value of
1+2'+5 is not very large (predominant s-wave scatter-
ing) as follows from the near equality of the result ob-
tained by either36‘ averaging the full expression (C8) or
just the denominator of the same expression.

This “GRPA with renormalized value of U ” approach
seems to be valid for a wider range of parameters (in par-
ticular, closer to half-filling) than is justified by the above
arguments based on the MCL approach.!®!? This sug-
gests that, like Fermi-liquid theory, the structure of the
theory at finite ¢ remains the same with strong interac-
tions as that with weak interactions, provided that renor-
malized (but hard to calculate) parameters are used.
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