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Previous studies of the half-filled Hubbard model suggest that high-energy spin excitations in the high-temperture super-
conductor parent compoud La2CuO4 are well described when the interaction strength is in the weak to intermediate-coupling
regime. Using the same methodology as a previous Quantum Monte Carlo study, it is shown in this paper that even weaker
coupling is necessary to obtain agreement with experiment when realistic second-neighbor hopping is included. The value of
the interaction strength obtained is too small to explain the Hubbard gap at half-filling, suggesting either that the single-
mode approximation used in this work is inappropriate to describe high-energy spin excitations or that a more complicated
Hamiltonian including either three bands or direct ferromagnetic Heisenberg exchange is necessary to describe the Physics.
Des études antérieures du modèle de Hubbard à demi rempli suggèrent que les excitations de spin à haute énergie du

matériau La2CuO4 sont bien décrites quand la force de l’interaction est dans le régime de couplage faible à intermédiaire.
Utilisant la même méthodologie qu’une étude antérieure basée sur le Monte Carlo quantique, il est démontré ici qu’un couplage
encore plus faible est nécessaire pour obtenir l’accord avec l’expérience lorsqu’un saut au deuxième voisin réaliste est inclu
dans l’hamiltonien. La valeur de l’interaction ainsi obtenue est trop faible pour expliquer le gap de Hubbard à demi rempli.
Ceci suggère soit que l’approximation à un mode utilisée dans ce travail n’est pas valable pour décrire les excitations de spin
à haute énergie, ou qu’un Hamiltonien plus compliqué, incluant trois bandes ou un échange ferromagnétique direct de type
Heisenberg, est nécessaire pour décrire la physique.

1 Introduction

Electronic properties of a large fraction of solids can be
predicted using band theory in its modern form, namely
density functional theory combined with the so-called
GW approach [1]. However, the understanding of ma-
terials with d and f electrons is most often beyond the
capabilities of this approach. High temperature super-
conductors belong to this category. This is especially
striking for the parent compounds, namely the undoped,
non-superconducting versions of the high-temperature
superconductors. Band theory predicts that they have a
half-filled band and hence should be good metals, but
experiment shows that they are antiferromagnetic in-
sulators at low temperature, and that they remain in-
sulators above their antiferromagnetic transition tem-
perature. They are so-called Mott insulators. First-
principle approaches combining density-functional the-
ory and many-body theory are being developed right now
[2] but still the most common approach in d and f elec-
tron systems is to work with phenomenological Hamil-
tonians that include band structure information in the
form of hopping amplitudes that reproduce the calcu-
lated band structure, and residual interaction terms that
have to be treated by many-body approaches. Experi-
ence indicates that at least the ratios of the hopping
parameters obtained from band structure calculations
are reliable. The value of the interaction strength and
the absolute scale of hopping parameters can be better
obtained by comparing the results of calculations with
experiment.
For high-temperature superconductors, the Hamilto-

nian that is most commonly used is the two-dimensional
Hubbard model on a square lattice with both first and
second-neighbor hopping. It reads,

H = −t
X
hi,ji,σ

(c†i,σcj,σ + c†j,σci,σ) (1)

−t0
X

hhi,jii,σ
(c†i,σcj,σ + c†j,σci,σ) + U

X
i

ni,↑ni,↓

where c†i,σ(ci,σ) creates (annihilates) an electron of spin
σ on site i, ni,σ is the number of electrons of spin σ
on site i, t is the hopping amplitude over all nearest-
neighbor bonds hi, ji , t0 is the hopping amplitude over
all next-nearest-neighbor bonds hhi, jii and U is the on-
site repulsion parameter. We work in units where hop-
ping t, Boltzmann’s constant kB and Planck’s constant
~ are all unity. Band structure calculations [3] reveal
that a third neighbor hopping should also be included.
Detailed comparisons with photoemission experiments
[4][5][6], for example, confirm this result. Unless very
detailed fits with experiment are required however, the
third neighbor hopping can be neglected since it is gener-
ally smaller than the other two terms. Neglect of second-
neighbor hopping t0 however leads to qualitatively wrong
results for the shape of the Fermi surface of both hole-
and electron-doped high temperature superconductors.
Also, t0 = 0 would not lead to good fits to experimental
photoemission or optical [7] data at half-filling.
In the present paper, we study the spin excitations

of the above Hamiltonian in the insulating parent com-
pound. This is motivated by recent neutron scattering



experiments [8] on La2CuO4 that have, for the first time,
allowed high resolution study of the high-energy disper-
sion of spin excitations (or magnons). These are sensitive
to details of the Hamiltonian, unlike the long-wavelength
low-energy modes. By comparing the results of experi-
ments with those of the effective spin Hamiltonian found
in the large U limit of the above Hamiltonian, [9][10][11]
the authors of Ref. [8] concluded that t0 leads to effects
that can be neglected since they are smaller than the
ring-exchange contributions that are the first corrections
to simple near-neighbor exchange. Given the nearest-
neighbor exchange J = 4t2/U − 24t4/U3, the ring-
exchange Jc = 80t4/U3 and the second and third neigh-
bor exhanges J 0 = J 00 = 4t4/U3 (the latter are subdom-
inant), they were able to find both U and t. At 10K for
example, they found t = 0.30± 0.02eV, U = 2.2± 0.4eV.
Unfortunately, this value of U = 7.3t±1.8t is at the limit
of validity of the expansion in powers of 8t/U (where
W = 8t is the bandwidth). In addition, these authors
[8] used only the leading order spin-wave analysis on the
biquadratic part of the ring exchange Hamiltonian to ob-
tain the theoretical predictions that they compare with
experiment. It has been argued [12] that to the same or-
der in (t/U), biquadratic and bilinear terms are in just
the right ratio that linear spin wave analysis leads to a
flat dispersion on the zone boundary, just like the Heisen-
berg model at the same level of approximation. Disper-
sion at high-frequency should be a purely quantum effect
(higher order in 1/S) when both biquadratic and bilinear
terms are taken into account. So, Katanin and Kampf
[13] found it appropriate to perform more sophisticated
self-consistent spin-wave theory and they found a J that
is a few percent larger than in Ref. [8], but their Jc is
considerably smaller, namely about half the value found
in Ref. [8]. If we use the same expression [9][10] as that

used in Ref. [8] , Jc/J = 20 (t/U)2
³
1− 6 (t/U)2

´−1
,

the ratio Jc/J = 0.24 found by Katanin and Kampf [13]
leads to U = 9.5t that is more consistent with previous
estimates, U = 10t, from photoemission [6]. It is note-
worthy that the W/U expansion should be better justi-
fied for this value. Again, in this limit, the effect of t0

would manifest itself through the second-neighbor hop-
ping exchange integral, but its contribution should be
more important since the ring-exchange term is smaller.
A lingering possibility is that theW/U expansion does

not converge very well [11] and that, instead of effective
spin models, one should really compare the full Hub-
bard Hamiltonian with experiments. This is what Sen-
gupta, Scalettar and Singh [12] achieved by comparing
Quantum Monte Carlo calculations with the experimen-
tal results of Ref. [8]. Using in addition the so-called
single-mode approximation (SMA), they found that the
frequency at (π/2, π/2) is smaller by 12% than the fre-
quency at the (π, 0) wave-vector when U/t = 6 on an
8 × 8 lattice [12]. This corresponds well to the experi-
mental value found in Ref. [8]. The value U/t = 6 found

in that work confirmed an earlier independent result of
Peres and Araujo[14] obtained using the Random Phase
Approximation (RPA) for the Hubbard model. However,
U = 6t certainly corresponds to a regime where theW/U
expansion breaks down so that it does not make sense
to talk about direct and ring exchanges. Then, one can-
not invoque the ring exchange contribution to neglect
the second-neighbor hopping t0. In addition, the esti-
mate U = 6t is lower than that obtained by most other
workers and is on the lower side of the critical value es-
timated necessary to obtain a finite-temperature Mott
gap at half-filling [15][16].
The question of the effect of t0 on the high-frequency

spin excitations of the Hubbard model at half-filling is
thus important. One would hope that comparison with
experiment would lead us to a higher value of U , in bet-
ter agreement with other estimates and more consistent
with the large value of U necessary to obtain a Mott
insulator at half-filling. Two studies based on the RPA
have appeared for this problem.[17][18] The present pa-
per addresses the same question using quantum Monte
Carlo simulations.
In the following, the amplitude of the next-nearest

neighbor hopping has been chosen such that as many
wave vectors as possible cross the Fermi surface. For
an 8 × 8 lattice, the optimal value is t0 = −0.35 [19].
This is larger than t0 = −0.17 obtained from band struc-
ture calculations [20][3] for La2CuO4 but comparable to
values found in other high-temperature superconductors
such as Y Ba2Cu3O7 and Bi2Sr2CaCu2O8. Since our
purpose is to answer whether in the presence of t0 the
value of U should be larger or smaller to obtain agree-
ment with experiment, we find it preferable to work with
a value of t0 that is sufficiently large to clearly show the
trend.
In the next section, we discuss several methodological

aspects of this problem. First we describe details of the
Quantum Monte Carlo calculations and then the single-
mode approximation. We then present the results and
conclude.

2 Methodological aspects

2.1 Quantum Monte Carlo simulations

In the context of this conference on high-performance
computing, we find it appropriate to mention some tech-
nical details on the Quantum Monte Carlo simulations.
We want to obtain thermal averages of operators in the
grand-canonical ensemble. Direct calculation of the par-
tition function Tr

£
e−β(H−µN)

¤
with β = 1/T and µ the

chemical potential, is basically impossible even on an
8 × 8 lattice. In that case, taking into account the fact
that each site can be either empty, doubly occupied, or
singly occupied with spin up or down, there are 48×8 =
3. 4×1038 possible states. Monte Carlo methods with im-
portance sampling are a method of choice in the case of



statistical problems with huge state spaces. In the case
of classical mechanics, it is quite simple to compute how
e−β(H−µN) is modified when it is applied on two states
that differ by a local change. That is all that is needed
to perform Monte Carlo simulations. In the quantum
case, the exponential of β (H − µN) can be computed
only if H can be diagonalized, which is the problem we
are faced with from the very beginning: H has a ki-
netic part K and a potential part V that are diagonal
respectively in momentum and in coordinate space. The
basis where K + V is diagonal is unkown. To address
this difficulty, the problem is first made to look more
classical by using the so-called Trotter decomposition,
e−β(H−µN) = e−∆τ(H−µN)e−∆τ(H−µN) . . . e−∆τ(H−µN)

with the number of exponentials, or number of “time
slices”Nτ given byNτ = β/∆τ . In the limit∆τ → 0 one
can write e−∆τ(H−µN) = e−∆τKe−∆τ(V−µN) +O

¡
∆τ2

¢
which means progress since we know the basis where ei-
ther exponential is diagonal. However, the change of
basis necessary to move from one operator to the next is
still a formidable task for a many-body problem like the
one we consider now, where the motion of electrons is not
independent. To go around this, one performs a so-called
Hubbard-Stratonovich transformation on e−∆τ(V−µN).
More specifically, one can use an identity [21] that is eas-
ily proven by recalling that ni,↑ and ni,↓ can take only
the values 1 and 0 :

e−∆τU(ni,↑−
1
2)(ni,↓− 1

2) = e−∆τU/4
1

2

X
xi=±1

eλxi(ni,↑−ni,↓)

(2)
where cosh (λ) = e∆τU/2. There is now one Hubbard-
Stratonovich variable xi per site in space-time, in other
words on a L×L lattice there are 2L

2Nτ possible values
for the set of Hubbard-Stratonovich variables. At first it
looks as if we have complicated the problem by increas-
ing the number of variables to be traced over. However,
at the end it is only the trace over Hubbard-Stratonovich
variables that is finally sampled by Monte Carlo meth-
ods because the use of the above identity allows us to
transform the problem into one where the electrons are
independent but move in a space and time dependent
potential (coming from the Hubbard-Stratonovich vari-
ables). This means that the quantum mechanical trace
over fermions can now be performed exactly in alge-
braic time for any given configuration of the Hubbard-
Stratonovich variables. The trace over fermions, how-
ever, is a determinant that can be either positive or
negative, which means that to apply importance sam-
pling, one must take the absolute value of the determi-
nant and move the sign to the observable. That leads
to the so-called sign problem: There are cases where the
sign changes so often from one configuration to the next
that importance sampling becomes exponentially inef-
ficient. There are many other technical difficulties one
must address, in particular the question of numerical sta-
bility at low temperature [22]. The reader is refered to

a recent review [23] and to the original literature on this
so-called Determinant Quantum Monte Carlo Method
[24]. A review in French is also available [25].
For the simulations presented in this paper, we typ-

ically use 1.25 × 105 measurements, each measurement
being performed after a full update of all the Hubbard-
Stratonovich variables of the space-time lattice. The
measurements are grouped in blocks of 250 measure-
ments for estimation of the statistical error. The value
of ∆τ is 1/10. We checked that, given the statistical
uncertainties, larger ∆τ = 1/8 would not have changed
our results. This is discussed further in the next section.
The numerical stabilization at low temperature is per-
formed by Gram-Schmidt decomposition every five time
slices [22]. Also, averaging over independent simulations
that each have their warmup cycles reduces ergodicity
problems.
There are different possible estimators, namely hSzSzi

and hS+S−i+hS−S+i, for the spin-spin correlation func-
tions that we will need. We checked that hSzSzi had
smaller statistical error at the temperatures of interest,
so that is what we used. Since we do not have particle-
hole symmetry, the average sign is different from unity
and in addition the chemical potential corresponding to
half-filling must be found by iteration. For example, at
β = 3, U = 6 the average sign is 0.724 and the value
µ = −.27995 gives a filling of 0.99967± 0.4× 10−4. For
such high temperature and high-energy properties, size
8× 8 should be enough. A 6× 6 lattice gives results for
intermediate values of the wave vectors that are consis-
tent interpolations between the wave vectors of the 8×8
lattice [12]. Further discussion of size effects is given in
the section on results below.
The program is written in Fortran 90 with allocatable

memory. It is compiled with the Intel Fortran Com-
piler, which is free for academia and performed faster
than others we have tested. For an 8× 8 lattice at these
high temperatures, β = 3, the program typically takes
6.6 MB of memory and 44 hours of computation time
for 1.25 × 105 measurements and 1 × 104 warmups on
a pentium IV processor running at 2.5GHz. Computa-
tion time scales roughly like

¡
L2
¢3
Nτ . For example, 105

measurements and 2×104 warmups on a 12×12 system
at the same temperature take 480 hours and 33 MB.
Typically, 10 jobs with a thousand warmups and tens of
thousands of measurements each are sent on the nodes of
a Beowulf cluster and the results are averaged to obtain
of order 105 measurements. In this way, one run at fixed
U and temperature for an 8× 8 system takes roughly a
day for example on a cluster of 667MHz pentium III
machines.

2.2 Single-mode approximation

Ideally, one should compute the imaginary part of the
frequency and wave vector dependent spin susceptibility,
which is accessible through neutron scattering. But this
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Figure 1. Frequency as a function of temperature for two
wave vectors at U = 6 on an 8×8 lattice. The continuous line
represents the energy at wave-vector (0, π), and the dash-line
the energy at wave-vector (π/2, π/2). We observe that at low
temperature (high β), the dispersion converges. Error bars
are smaller than the symbols.

means that one should perform analytical continuation
of the Quantum Monte Carlo calculations since these are
performed in imaginary-time. This is usually achieved
by using the so-called Maximum Entropy method [26].
For the problem at hand, in agreement with the authors
of Ref. [12], we were unable to obtain reliable data using
this approach. We thus followed the procedure of Ref.
[12] and obtained the dispersion relation of the spin ex-
citations from the so-called single-mode approximation
(SMA)

ω (q) = 2S (q) /χ (q) (3)

where S (q) is the spin structure factor and χ (q) is the
zero-frequency spin susceptibility obtained simply from
integration over imaginary time. This result becomes ex-
act in the limit where the imaginary part of the spin sus-
ceptibility is peaked at only one frequency for any given
wave vector. Indeed, using the fluctuation-dissipation
theorem,

S (q) =

Z
dω

2π

2

1− e−βω
χ00 (q,ω) (4)
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Figure 2. Frequency as a function of temperature for two
wave vectors at U = 0 on an 8 × 8 lattice. This U = 0
case illustrates that when the SMA does not work, there is a
strong temperature dependence. The symbols have the same
meaning as in the previous figure.

and the spectral representation

χ (q) =

Z
dω

π

χ00 (q,ω)
ω

, (5)

if the odd function χ00 (ω) is proportional to
δ (ω − ω (q)) − δ (ω + ω (q)) then the result Eq.(3) fol-
lows when 1 À e−βω(q). As we shall see shortly, we
work with β = 3 and ω (q) ∼ 1 so the inequality is
satisfied. It is known [27] however, that for t0 = 0 and
large U there is a broad multimagnon continuum above
the single magnon mode. We expect an analogous con-
tinuum with finite t0. Sengupta et al. [12], based on the
work of Ref. [27], argue that while the magnitude of the
frequency found from the SMA is affected by the high
frequency multimagnon continuum (the SMA in that
case gives and upper bound for ω (q)), nevertheless the
overall shape of the dispersion relation is not affected by
the continuum. Since we shall be using only information
on ratio of frequencies, it is argued that this should be
a sufficiently accurate approach.
We are interested in high-frequency modes hence the

simulations, as in Ref. [12], can be performed at rela-



tively high temperature. To prove this, Fig. (1) shows
the value of the high-frequency modes at (π, 0) and
(π/2, π/2) estimated from the SMA as a function of in-
verse temperature β for U = 6 and t0 = −0.35. Although
the estimated mode frequencies appear weakly tempera-
ture dependent at β = 3, their differences for β = 3.0, 3.2
and 3.5 are, respectively, 6.8%, 8.1% and 6.7%. There is
no systematic drift in this difference. The fluctuation of
about 13% seen between these last three numbers should
be considered as coming from the error bars of the Quan-
tum Monte Carlo.
With t0 = 0 [12], the temperature dependence is

weaker beyond β = 3. The sign problem prevents us
from doing simulations at β = 4, so we choose the same
temperature as in Ref. [12], namely β = 3. Fig. (2) con-
trasts the same calculation in the case where the SMA
does not work, namely at U = 0. Clearly, there is a
strong temperature dependence, even at low tempera-
ture. In addition, a plot of the dispersion relation in the
U = 0 case (not shown) reveals that the mode at (π, π)
is not soft. The softening of the (π, π) point observed
when U = 6 in Fig. (3) signals that antiferromagnetism
is setting in. We checked that at t0 = 0 we recover all
the results of Ref. [12]

3 Results

3.1 No second-neighbor hopping

We first performed additional tests for dependence on
size, temperature and impaginary time discretization.
Size dependence was checked further by performing the
simulations at U = 6t, β = 3 for a 12× 12 lattice, which
corresponds to the size where systematic convergence to
the thermodynamic limit was better than about 3% per-
cent in the work on the Heisenberg model of Ref.[27].
The values of ω (π, 0) , ω (π/2, π/2) that we found are
identical to those for the 8×8 lattice to within the 0.5%
statistical accuracy. Close to 106 samples were used for
these tests. We also tried to check for size dependence
at lower temperature on larger lattices, but results on
105 samples for β = 5 on a 12 × 12 lattice, for exam-
ple, only give about 20% statistical accuracy, which is
not enough. Simulations with better statistical accu-
racy for these parameters are prohibitive. Finally, as a
further check of the systematic error introduced by the
Trotter decomposition, we checked that for the 8×8 lat-
tice, ∆τ = 1/8 and ∆τ = 1/10 give identical results for
ω (π, 0) , ω (π/2, π/2) within 0.5% statistical accuracy.
Given that the work of Katanin and Kampf [13] sug-

gests the value U = 10t for a good fit to experiment,
we performed simulations on 8× 8 systems at β = 3. A
large number of Monte Carlo samples

¡
106
¢
is needed.

We found that the dispersion between ω ( π, 0) and
ω ( π/2, π/2) is flat to the 1.5% statistical accuracy. Not
surprisingly, this interpolates between the results found
in Ref. [12] for U = 8t and for the Heisenberg model,
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Figure 3. Energy dispersion relation in the SMA as a func-
tion of wave vector for β = 3.0 and U = 6.0 for an 8 × 8
lattice. The coordinates on the horizontal axis must be mul-
tiplied by π/2. The line corresponds to the case t0 = 0.0,
and the points correspond to the case t0 = −0.35. Error bars
represent the statistical Quantum Monte Carlo errors.

which corresponds to the very large U limit. This dis-
agreement with the results of Katanin and Kampf [13]
may come from the fact that the SMA is not valid or
from the fact that the self-consistent 1/S expansion is
not justified in the presence of ring exchange.[28] Indeed,
in that approach, the ring exchange contribution, which
should be a correction to the direct exchange term, is in
fact larger than direct exchange term by a factor S2.

3.2 Finite second-neighbor hopping

We plot on Fig. (3) the magnon dispersion relation
obtained for an 8×8 system at U = 6, β = 3 when t0 = 0
and when t0 = −0.35. In the latter case, the Quantum
Monte Carlo error bars are much larger because of the
sign problem. Let us focus on the dispersion on the line
going between (π/2, π/2) and (π, 0) . For this value of
U, the case t0 = 0 that was studied in Ref. [12] leads to
1− ω ( π, 0) /ω ( π/2, π/2) = −12% that corresponds to
the experimental value of Ref. [8]. With t0 = −0.35 the
absolute value of this ratio is smaller.
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Figure 4. Energy dispersion relation along the (0, π) to
(π/2, π/2) to (π, 0) line for β = 3.0 and t0 = −0.35. The
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Each line correspond to a fixed value of U . The dispersion
increases with smaller U . Error bars represent the statistical
quantum Monte Carlo error.

To fit the experimental value of the dispersion, we need
a smaller value of U/t as demonstrated in Fig. 4 where we
plot the dispersion relation along the (0, π) to (π/2, π/2)
to (π, 0) line. The data is normalized for each U such
that, ω (π, 0) = 1. Clearly, the dispersion increases with
decreasing U and reaches the experimental value around
U = 5.0t± 0.5t.

4 Discussion and conclusions

Previous QMC simulations [12] have suggested, in
agreement with RPA calculations, [14][17] that the dis-
persion of high-frequency spin-wave excitations in the
parent high-temperature superconductor La2CuO4 can
be explained with the Hubbard model at U = 6t. We
have shown here that the addition of second-neighbor
hopping t0 = −0.35t leads to an even smaller value of the
interaction strength, namely U = 5t ± 0.5t. This lower-
ing of U is in agreement with RPA calculations [17][18]
and is what would have been expected if we had been
at strong coupling. Indeed, it is known that second-

neighbor ferromagnetic exchange (J2 < 0) can explain
the experimental dispersion [8] but second-neighbor hop-
ping in a Hubbard model leads to an antiferromagnetic
second-neighbor exchange (J2 > 0). This has to be com-
pensated by a smaller U since lowering U tends to in-
crease the dispersion in that weak coupling range of U
values.
However, U of order 6t is too small to explain the

Mott gap at half-filling. Comparisons of photoemission
experiments with the results of exact diagonalization for
example suggests U = 10t [6].
One possibility is that the SMA is not accurate and

that finite size effects are important so that the agree-
ment with RPA calculations is fortuitous. Indeed, in
the Heisenberg limit it is known [12] that the disper-
sion obtained with the QMC+SMA approach leads to a
(π/2, π/2) mode that is only 2% higher than the (π, 0)
mode while more sophisticated calculations [27] suggest
that this number should be 5% on an 8× 8 system and
10% in the thermodynamic limit. The SMA in particular
can be questioned since there is a multimagnon contin-
uum at high frequency [27] that is different for the two
wave vectors of interest. We however did several tests
that did not invalidate the SMA nor suggested large size
effects.
If the SMA is valid and size effects are not impor-

tant, then the effective Hamiltonian obtained from the
Hubbard model at U = 10t is not sufficient to describe
spin excitations. It is conceivable that direct ferromag-
netic exchange between next-nearest neighbors J2 has
to be included explicitly in the effective Hamiltonian [8]
but ab initio calculations [29] suggest antiferromagnetic
J2. Comparisons of exact diagonalizations with phonon
assisted multimagnon infrared scattering also suggest
antiferromagnetic J2.[30] However, the convergence of
the strong coupling expansion for mapping the three-
band model onto an effective spin Hamiltonian is not so
clear. In particular the sign of J2 is ambiguous.[11] An-
other possibility is that in mapping the three-band model
to a single-band model, the ring-exchange and direct-
exchange contributions are not in the same proportion
as those predicted from the simple one-band Hubbard
model. [31] In other words, the mapping from a three-
band model to a single-band model most probably leads
to effective Hamiltonians in the spin and single-particle
sectors whose relation is different from that expected
from the simple Hubbard model.
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