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Weak ferromagnetism and other instabilities of the two-dimensionalt-t8 Hubbard model
at van Hove fillings
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We investigate magnetic and superconducting instabilities of the two-dimensionalt-t8 Hubbard model on a
square lattice at van Hove densities from weak to intermediate coupling by means of the two-particle self-
consistent approach. We find that as the next-nearest-neighbor hoppingut8u increases from zero, the leading
instability is towards an incommensurate spin-density wave whose wave vector moves slowly away from
(p,p). For intermediate values ofut8u, the leading instability is towardsdx22y2-wave superconductivity. For
larger ut8u.0.33t, there are signs of a crossover to ferromagnetism at extremely low temperatures. The
suppression of the crossover temperature is driven by Kanamori screening that strongly renormalizes the
effective interaction and also causes the crossover temperature to depend only weakly ont8. Electronic
self-energy effects for largeut8u lead to considerable reduction of the zero-energy single-particle spectral
weight beginning at temperatures as high asT&0.1t, an effect that may be detrimental to the existence of a
ferromagnetic ground state at weak coupling.

DOI: 10.1103/PhysRevB.68.214405 PACS number~s!: 75.10.Lp, 71.10.Fd, 71.27.1a
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I. INTRODUCTION

Historically, the single-band Hubbard model was su
gested independently by Gutzwiller,1 Hubbard,2 and
Kanamori3 to gain insight into the origin of metallic ferro
magnetism. However, despite enormous efforts4 that were
undertaken to find answers to this question, only a few r
able results have been obtained even for this simplest
sible microscopic model. The Hubbard model also exhibit
variety of other competing phases, including antiferrom
netic and superconducting phases.

The first exact results for ferromagnetism were obtain
in the strong-coupling limit,U→`, by Nagaoka5 and
Thouless6 who showed that the ground state of the Hubb
model with one hole or electron is ferromagnetic at an in
nitely large Coulomb repulsion. That result did not answ
the question of stability to a finite concentration of holes
the thermodynamic limit. Improved bounds for the Nagao
state have recently been derived7 for various lattices in two
and three dimensions. Ferromagnetic ground states also
cur if one of the several bands of the model is dispersion
~so-called Lieb’s ferrimagnetism8 and flat-band ferro-
magnetism9!. Mielke and Tasaki proved the local stability o
ferromagnetic ground states in the Hubbard model w
nearly flat10 and partially filled11 bands. Reference 12 con
tains a short review of these works as well as new results
Hubbard models without the singularities associated with
bands. A review of results13 obtained for the simple one-ban
Hubbard model in the last few years as well as the result
Mielke and Tasaki suggest that the important ingredients
ferromagnetism in that model are~a! an interaction strength
that is in the intermediate to strong coupling regime and~b!
a band that exhibits a strong asymmetry and a large den
of states near the Fermi energy or near one of the b
0163-1829/2003/68~21!/214405~11!/$20.00 68 2144
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edges. Metallic ferromagnetism at weak coupling, usua
known as Stoner ferromagnetism, has in fact been ruled o
long time ago by Kanamori3 based on the argument that th
renormalization of the interaction strength brought about
T-matrix effects~Kanamori screening! would never allow the
Stoner criterion to be satisfied when the density of state
the Fermi levelr(EF) is nonsingular. Physically, the large
possible effective interaction, according to Kanamori,
equal to the kinetic-energy cost for making the two-parti
wave function vanish when the two particles are at the sa
site. That energy scales like the bandwidthr(EF)21 so that
the Stoner criterion 12Ur(EF)50 cannot be fulfilled.
Quantum Monte Carlo calculations confirm the quantitat
nature of Kanamori’sT-matrix result.14

If there is Stoner-type ferromagnetism in weak to inte
mediate coupling, it is thus clear that, as in the moderate
strong-coupling case, one needs at least a singular densi
states to overcome Kanamori screening. An example o
model with singular density of states at the Fermi energy
well as band asymmetry is the two-dimensional~2D! Hub-
bard model with both nearest neighbort and next-nearest
neighbort8 hoppings. When the Fermi energy is close to t
van Hove singularity the corresponding filling is usually r
ferred to as a ‘‘van Hove filling.’’ At that filling, the Ferm
surface passes through the saddle points of the single-pa
dispersion. There are, however, other phases competing
ferromagnetism. At weak to moderate values of the on-
Coulomb repulsionU, for small t8/t and close to half-filling,
the 2D t-t8 Hubbard model shows an antiferromagnetic
stability. That instability due to nesting is howeve
destroyed15 for a sufficiently large ratiot8/t at weak interac-
tions in two and three dimensions, thus leaving room
other instabilities, includingd-wave superconductivity and
metallic ferromagnetism.
©2003 The American Physical Society05-1
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The questions that we address in this paper are thus
following. Can the asymmetry of the band and the large d
sity of states near the Fermi energy overcome the Kanam
argument and lead to ferromagnetism in the 2D Hubb
model? What are the competing phases? Most results on
problem~particularly for a square lattice! fall into three dif-
ferent classes.

~a! Momentum-cutoff renormalization-group ~RG!
methods16,17 and quantum Monte Carlo calculations18 sug-
gest that there is no evidence for ferromagnetism. But
problem, in particular with numerical methods, is that on
very small system sizes can be used in a regime where
size dependence is important. In addition, momentum-cu
RG does not allow the contribution of ferromagne
fluctuations.19 So these results should not be considered c
clusive.

~b! The second class of results is based on Wegner’s fl
equations. They show20 a tendency towards weak ferroma
netism withs* -wave character~the order parameter change
sign close to the Fermi energy!. According to the flow equa-
tions calculations this phase competes with other instabili
in the particle-hole channel, in particular with the Pomera
chuk instability. The difficulty of those weak-coupling calc
lations is that thes* -magnetic phase occurs at stronger co
pling than the regime of validity of the second-order analy
in U of the flow equations.

~c! The third class suggests clear evidence for ferrom
netic ground states. These works include a projector quan
Monte Carlo calculation with 20320 sites and theT-matrix
technique,21 a generalized random-phase approximat
~RPA! including particle-particle scattering22 and exact
diagonalizations.23 Similar tendencies have been found
the authors of Refs. 24 and 25 within the renormalizatio
group and parquet approaches for the so-called two-p
model. Honerkamp and Salmhofer recently studied19 the sta-
bility of this ferromagnetic region at finite temperatures
means of a temperature-cutoff renormalization-gro
~TCRG! technique analogous to that used earlier for o
dimensional systems.26 For U53, they have found that the
ferromagnetic instability is the leading one forut8u.0.33utu
at van Hove fillings with the critical temperature strong
dependent on the value oft8. When the electron concentra
tion deviates slightly away from the van Hove filling, th
tendency towards ferromagnetism is cut off at low tempe
tures and a tripletp-wave superconducting phase dominat
TheU dependence of these ferromagnetic and supercond
ing phases in the ground state has been studied in Ref. 2
means of the same TCRG at weak coupling.

In the present paper we study ferromagnetism and c
peting phases in thet-t8 Hubbard model at weak to interme
diate couplings by means of the two-particle self-consist
~TPSC! approach.28 Antiferromagnetism anddx22y2-wave
superconductivity are the competing instabilities. The TP
approach is nonperturbative and applies up to intermed
coupling. It enforces the Pauli principle, conservation law
and includes the Kanamori screening effect. Comparis
with quantum Monte Carlo calculations have shown t
TPSC is the analytical approach that gives the most accu
results for the spin structure factor,29 the spin susceptibility,28
21440
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and the dx22y2-wave susceptibility30 in two dimensions.
Throughout the paper we consider the 2Dt-t8 Hubbard
model at van Hove fillings from weak to moderate coupling
We determine the regions of theT-t8 plane where the uni-
form paramagnetic phase becomes unstable to various t
of fluctuations. We also estimate the electronic self-ene
effects for larget8 where ferromagnetic effects are prese
The following section recalls the methodology. We th
present the results and conclude.

II. TWO-PARTICLE SELF-CONSISTENT APPROACH

We consider thet-t8 Hubbard model on a square lattic
with nearest~t! and next-nearest (t8) neighbor hoppings

H52t (
^ i j &s

~cis
† cj s1H.c.!2t8 (

^^ i j &&s
~cis

† cj s1H.c.!

1U(
i

ni↑ni↓ , ~1!

wherecis
† (cis) is the creation~annihilation! operator for the

electrons with spin projectionsP$↑,↓%, U is the local Cou-
lomb repulsion for two electrons of opposite spins on t
same site, andnis5cis

† cis is the occupation number. Th
bare single-particle dispersion has the form, in units wh
lattice spacing is unity,

«k522t~coskx1cosky!24t8coskxcosky . ~2!

This spectrum leads to a van Hove singularity in the den
of states coming from saddle points of the dispersion rela
that are located atk5(0,6p) and (6p,0). The correspond-
ing energy is«VH54t8. In this paper we always consider th
case where the noninteracting chemical potential is 4t8, so
that the noninteracting Fermi surface crosses the sa
points and the noninteracting density of states diverges lo
rithmically at the Fermi energy. The filling corresponding
this choice of chemical potential is a ‘‘van Hove filling.’’ Fo
t850 and half-filling the Fermi surface is perfectly neste
namely, «k1Q52«k , with Q5(p,p), which leads to an
antiferromagnetic instability forU.0. The perfect nesting is
removed fort8/tÞ0. We work in units where Bolzmann’s
constantkB and nearest-neighbor hoppingt are all unity.

The TPSC approach28 can be summarized as follows.31

We use the functional method of Schwinger-Marti
Kadanoff-Baym with source fieldf to first generate exac
equations for the self-energyS and response~four-point!
functions for spin and charge excitations~spin-spin and
density-density correlation functions!. In such a scheme, spi
and charge dynamical susceptibilities can be obtained f
the functional derivatives of the source-dependent propa
tor G with respect tof. Our nonperturbative approach the
consists in two steps.

At the first level of approximation, we use the followin
two-particle self-consistent scheme to determine the tw
particle quantities: We apply a Hartree-Fock-type factori
tion of the four-point response function that defines the pr
uct SG, but we also impose the important addition
constraint that the factorization is exact when all space-t
5-2
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WEAK FERROMAGNETISM AND OTHER INSTABILITIES . . . PHYSICAL REVIEW B 68, 214405 ~2003!
coordinates of the four-point function coincide. From t
corresponding self-energy, we obtain the local momentu
and frequency-independent irreducible particle-hole ver
appropriate for the spin response

Usp5
dS↑
dG↓

2
dS↑
dG↑

5U
^n↑n↓&

^n↑&^n↓&
. ~3!

The renormalization of this vertex mainly comes14,28 from
Kanamori screening.3 The double occupancŷn↑n↓& entering
this equation is then obtained self-consistently using
fluctuation-dissipation theorem and the Pauli principle. Mo
specifically, the Pauli principlêns

2&5^ns& implies that

^~n↑2n↓!2&5^n↑&1^n↓&22^n↑n↓&,

while the fluctuation-dissipation theorem leads to an equa
between the equal-time equal-position correlation^(n↑
2n↓)2& and the corresponding susceptibility, namely,

^~n↑2n↓!2&5
T

N (
q

xsp
(1)~q!5n22^n↑n↓&, ~4!

where, using the shorthandq[(q,2ipmT), the summation
is over all wave vectors and all Matsubara frequencies witT
being the temperature,n being the electron filling, andN
being the number of lattice sites. The latter equation i
self-consistent equation for the double occupancy, or equ
lently for Usp in Eq. ~3!, because the spin susceptibility e
tering the above equation is

xsp
(1)~q!5

x0~q!

12
1

2
Uspx0~q!

, ~5!

wherex0(q) is the particle-hole irreducible susceptibility in
cluding the contribution from both spin components,

x0~q!5
2

N (
k

f ~«k!2 f ~«k1q!

2ipmT2«k1«k1q
, ~6!

with f («) being the Fermi-Dirac distribution function. Equa
tion ~4! is also known as the local-moment sum rule. T
Green functions at this first level of approximation,G(1),
contain a self-energyS (1) that depends on double occu
pancy; but, since this self-energy is momentum and
quency independent, it can be absorbed in the definition
the chemical potential. In the above then,G(1) is the bare
propagator andx0 is the bare particle-hole susceptibility bo
evaluated with the noninteracting chemical potentialm0 cor-
responding to the desired filling. The irreducible charge v
tex Uch5dS↑ /dG↓1dS↑ /dG↑ strictly speaking is not mo-
mentum and frequency independent. Nevertheless, assu
for simplicity that it is, it can be simply found by using th
fluctuation-dissipation theorem for charge fluctuations a
the Pauli principle,

T

N (
q

xch
(1)~q!5n12^n↑n↓&2n2,

with
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xch
(1)~q!5

x0~q!

11
1

2
Uchx0~q!

. ~7!

The spin and charge susceptibilities obtained from Eqs.~5!
and ~7! satisfy conservation laws.28,29 This approach, which
satisfies the Pauli principle by construction, also satisfies
Mermin-Wagner theorem: There is no finite-temperatu
phase transition breaking a continuous symmetry. Never
less, there is a crossover temperature below which the m
netic correlation length grows exponentially28 until it reaches
infinity at zero temperature. Detailed comparisons of
charge and spin structure factors, spin susceptibility,
double occupancy obtained with the TPSC scheme are
quantitative agreement with quantum Monte Carlo simu
tions for both nearest-neighbor28,29 and next-nearest
neighbor32 Hubbard models in two dimensions.

In loop expansions, response functions are compute
the one-loop level and self-energy effects appear only at
two-loop level. Similarly, in our case the second step of
approach gives a better approximation for the self-ene
We start from exact expressions for the self-energy with
fully reducible vertex expanded in either the longitudinal
the transverse channels. These exact expressions are ea
obtain within the functional derivative formalism. We inse
in those expressions the TPSC results obtained at the
step, namely,Usp and Uch , xsp

(1)(q), xch
(1)(q), and G(1)(k

1q) so that Green functions, susceptibilities, and irreduci
vertices entering the self-energy expression are all at
same level of approximation. Then considering both longi
dinal and transverse channels, and imposing crossing s
metry of the fully reducible vertex in the two particle-ho
channels, the final self-energy formula reads33,31

Ss
(2)~k!5Uns̄1

U

8

T

N (
q

@3Uspxsp
(1)~q!

1Uchxch
(1)~q!#Gs

(1)~k1q!. ~8!

This self-energy~8! satisfies28,31,33the consistency condition
between single- and two-particle properties, Tr(S (2)G(1))
52U^n↑n↓&. Internal consistency of the approach may
checked by verifying by how much Tr(S (2)G(2)) differs
from 2U^n↑n↓&. The results for single-particle propertie
given by the self-energy formula~8! are in quantitative
agreement28,33,34with numerical simulations at weak to mod
erate couplings. At temperatures much lower than the cro
over temperature where the correlation length increases
ponentially, the consistency condition signals that the met
becomes less accurate, although it does extrapolate in m
cases to a physically reasonable zero-temperature limit.28 In
the present paper, we will not present results below the cr
over temperature so we are always within the domain
validity. It should be noted that the self-energy Eq.~8! takes
into account the fluctuations that are dominant already at
Hartree-Fock level, namely, the antiferromagnetic ones.

The above formalism can be extended30 to compute pair-
ing correlations. Physically, thedx22y2-wave susceptibility
shows up after antiferromagnetic fluctuations have built
5-3
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since it is the latter that give some nontrivial momentu
dependence to the vertices. Momentum dependence o
vertices is absent in the bare Hamiltonian and also at the
level of TPSC. It appears from the momentum dependenc
the self-energy at the second level of approximation. In ot
words, our formalism physically reflects old ideas about p
ing by antiferromagnetic spin waves.35 What it contains that
is absent in other formalisms is the possibility of suppress
of superconductivity by pseudogap effects also induced
antiferromagnetic fluctuations.30

The mathematical procedure to obtain thedx22y2-wave
pairing susceptibility is as follows. Basically, the above ste
are repeated in the presence of an infinitesimal external p
ing field that is eventually set to zero at the end of the c
culation. This allows us to obtain the particle-particle irr
ducible vertex in Nambu space from the function
derivative of the off-diagonalS (2) with respect to the off-
diagonal Green function. Thed-wave susceptibility is de-
fined byxd5*0

bdt^TtD(t)D†& with the dx22y2-wave order
parameterD†5( i(gg(g)ci↑

† ci 1g↓
† , the sum overg being

over nearest neighbors, withg(g)561/2 depending on
whetherg is a neighbor on thex̂ or on theŷ axis.b[1/T, Tt
is the time-ordering operator, andt is imaginary time. The
final expression for thedx22y2-wave susceptibility is

xd~q50, iqm50!

5
T

N (
k

@gd
2~k!G↑

(2)~2k!G↓
(2)~k!#

2
U

4 S T

ND 2

(
k,k8

gd~k!G↑
(2)~2k!G↓

(2)~k!

3S 3

12
Usp

2
x0~k82k!

1
1

11
Uch

2
x0~k82k!D

3G↑
(1)~2k8!G↓

(1)~k8!gd~k8!, ~9!

with gd(k)5(coskx2cosky) being the form factor appropri
ate for d-wave symmetry. The above expression conta
only the first two terms of the infinite series corresponding
the Bethe-Salpeter equation. It should be noted that the
pearance ofG(2) on the right-hand side of the equation f
the susceptibility Eq.~9! allows pseudogap effects to su
press superconductivity.30 This effect is absent in conven
tional treatments of pairing induced by antiferromagnons

Since the crossover to the ferromagnetic ground s
found in our work appears at very low temperaturesT
<1/200), a large lattice is required in order to avoid finit
size effects at those temperatures. In the case of ferrom
netism, sensitivity of the results to the lattice size at lowT
can be avoided by making sure that the lattice is la
enough at any given temperature to reproduce the weakT
behavior of the bare particle-hole susceptibilityx0(q50,
iqm 5 0). That singularity reflects the singular density
states at the van Hove filling. We found that anN52048
32048 lattice suffices to computex0 entering the TPSC
phase diagram. The sum overq in Eq. ~4! can be performed
21440
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on a coarser mesh without loss of precision. To speed up
calculations and to overcome increasing memory requ
ments, especially at low temperatures, we use
renormalization-group acceleration scheme.36 Interpolation
is used to obtain quantities at temperatures that fall betw
those directly obtained with the renormalization-group acc
eration scheme.

III. WEAK FERROMAGNETISM AND OTHER
INSTABILITIES

Without loss of generality, we can taket.0 andt8<0. In
that case, the van Hove filling is always atn<1. The van
Hove fillings n>1 occur only whent and t8 have the same
sign, but this case can be mapped back to the situation
<1 using the particle-hole transformationcis

† →(21)idis

and cis→(21)idis
† where the phase factor takes the val

11 on one of the two sublattices of the bipartite lattice a
21 on the other sublattice. The sign oft and t8 can be
changed simultaneously with the particle-hole transformat
defined bycis

† →dis andcis→dis
† . Whenever a particle-hole

transformation is performed, the occupation number chan
from n to 22n. The van Hove filling vanishes atut8u
50.5utu so we restrict ourselves tout8u,0.5utu. For larger
ut8u there is a change in Fermi surface topology.

We begin with the RPA phase diagram in theT-t8 plane,
then move to the TPSC crossover diagram and conclude
a short section on effects that can be detrimental to ferrom
netism.

A. RPA phase diagram

Within RPA or mean field, the transition temperatureTc
may be found from

22Ux0~q,0!50, ~10!

wherex0(q,0) is the zero-frequency limit of the noninterac
ing particle-hole susceptibility given by Eq.~6!. In the case
of ferromagnetismq5(0,0), whileq5Q[(p,p) in the case
of commensurate antiferromagnetism. The temperature
which the uniform paramagnetic phase becomes unstab
fluctuations at the antiferromagnetic~AFM! or at the ferro-
magnetic~FM! wave vector is plotted in Fig. 1. One shou
keep in mind that, in all cases, we are speaking of sp
density waves, namely, the local moment is in gene
smaller than the full moment. Furthermore, forut8u different
from zero, the real wave vector where the instability occ
is incommensurate. The question of incommensurability
considered in more details in the TPSC section. Note tha
contrast to the caseU53, the ferromagnetic critical tem
perature forU56 does not increase witht8, it even de-
creases slightly. We do not explore the stability of the vario
phases that could occur in mean-field theory below the in
cated transition lines.

In both RPA and TPSC, the wave vector where the ins
bility first develops is related to theq dependence ofx0. In
TPSC, it is not only the maximum value ofx0(q,0) that
determines the crossover temperature, but also the whoq
5-4
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dependence ofx0 that comes in the sum rule Eq.~4! for Usp .
From the plot ofx0 as a function of wave vector atT
50.01 in Fig. 2, one can see that att850 the antiferromag-
netic wave vectorQ leads to the largest value ofx0. With
increasingut8u the maximum ofx0 is at an incommensurat
wave vectorQd5(p2d,p) close to (p,p), while for large
ut8u.0.32 the maximum moves clearly to (0,0). For interm
diate negative values of the next-nearest-neighbor hop
ut8u;0.3 the magnitudes of the susceptibility at (0,0) and
(p,p) are comparable so the change in the relative ma
tude as a function of temperature is important.

The main deficiencies of RPA are~a! finite-temperature
phase transitions in two dimensions that contradict
Mermin-Wagner theorem,~b! an overestimation of the effec
of U on Tc because of the neglect of the renormalization
U brought about by quantum fluctuations~Kanamori screen-
ing!. One can see from Fig. 1 that the RPA critical tempe
ture is quite a bit larger than the crossover lines predicted
the TCRG~see Fig. 1 of Ref. 19!. The TPSC remedies thes
deficiencies.

B. TPSC crossover diagram

We begin by considering the effective interactionUsp that
plays a crucial role in TPSC. In Fig. 3 we plotUsp as a
function of t8 as obtained from Eqs.~3!–~5!. One can see
that Kanamori screening strongly renormalizes the effec
interactions. This weakly temperature dependent renorm
ization effect is stronger for largeut8u in comparison with
small ut8u. To explain this behavior we consider the sum ru
that determinesUsp , Eq. ~4!. The main contribution to the
sum on the left-hand side of this equation comes from

FIG. 1. The RPA critical temperatureTc as a function of the van
Hove fillings indicated on the upper horizontal scale and the co
sponding value of next-nearest-neighbor hoppingt8 on the lower
horizontal scale. The critical temperatureTc is determined from Eq.
~10!. AFM stands for the region where the uniform paramagne
phase becomes unstable to fluctuations at (p,p) while FM is the
region where the instability is at (0,0). Vertical lines denote
boundary between AFM and ferromagnetic phases.
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small denominator caused, for largeut8u by x0(0,0), and for
small ut8u by x0(Q,0). As the coefficient before the loga
rithm scales as@A124(t8/t)2#21 for x0(0,0), and as ln„@1
1A124(t8/t)2#/(2t8/t)… for x0(Q,0), it turns out that
x0(0,0) increases rapidly forut8u near 0.5. This means tha
Usp has to decrease at largeut8u to satisfy the sum rule~4!
where, in addition, the quantityn22^n↑n↓& on the right-
hand side is a decreasing function of density~and hence of
ut8u).

To find the crossover lines, we consider the ze
frequency limit of the spin susceptibility given by Eq.~5!
and thedx22y2-wave pairing susceptibility given by Eq.~9!
above. The crossover temperatureTX for the magnetic insta-
bilities is chosen as the temperature where the enhance
factor xsp(q,0)/x0(q,0) is equal to 500. We have checke
that this corresponds to a magnetic correlation length
fluctuates around 25 lattice spacings forut8u betweenut8u
50 andut8u50.3. The crossover temperatureTX is not very
sensitive to the choice of criterion because near and be
the crossover region the enhancement factor grows very
idly ~exponentially!.

For pairing, we proceed as follows. Equation~9! contains
only the first two terms of the infinite Bethe-Salpeter seri
The first term ~direct term! describes the propagation o
dressed electrons that do not interact with each other w

-

c

FIG. 2. The noninteracting particle-hole susceptibilityx0 at zero
frequency as a function of wave vectorq along a path in the Bril-
louin zone is drawn for various values of next-nearest-neigh
hoppingt8 at T50.01. The filling is obtained by placing the chem
cal potential at the energy of the van Hove singularity for the giv
t8.
5-5
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the second term contains one spin-fluctuation~and charge-
fluctuation! exchange. This comes about in our formalis
becauseS (2) is a functional ofG(1). We would have ob-
tained an infinite number of spin- and charge-fluctuation
changes, in the usual Bethe-Salpeter way, if we could h
written S (2) as a functional ofG(2). This is not possible
within TPSC. We have only the first two terms of the fu
series. The superconducting transition temperature in two
mensions is of the Kosterlitz-Thouless type and is expec
to occur somewhat below the temperature determined f
the Bethe-Salpeter equation~Thouless criterion!. We thus
use, as a rough estimate for the transition temperature
d-wave superconductivity, the temperature where the con
bution of the vertex part~exchange of one spin and charg
fluctuation! becomes equal to that of the direct part~first
term! of the d-wave pairing susceptibility.30 In other words,
we look for the equality of the sign and the magnitude of
two terms appearing in Eq.~9!. This choice is motivated by
the statement that 11x1••• resummed to 1/(12x) di-
verges whenx51.

The TPSC phase diagram shows three distinct region
lustrated forU53 and forU56 in Fig. 4: ~a! for t850, the
leading instability is at the antiferromagnetic wave vec
and for small nonvanishingut8u it is at an incommensurat
wave vector close to (p,p). We will loosely refer to that
region as the region where antiferromagnetism domina
~b! For intermediate values of the next-nearest-neighbor h
ping, dx22y2-wave superconductivity dominates.~c! At large
negativeut8u.0.33 a crossover to a magnetic instability
the ferromagnetic wave vector occurs. Let us consider th
different regions in turn.

Near t850, TX is relatively high and the susceptibilit
near the antiferromagnetic wave vector grows most rapi
When we increaseut8u, the crossover temperature decrea
because of reduced nesting of the Fermi surface. In TPSC
wave vector of the instability is incommensurate for any
nite value of the next-nearest-neighbor hoppingut8u as can be
concluded from the structure of Eq.~5! and from the fact that

FIG. 3. Irreducible spin vertexUsp as a function of next-neares
neighbor hoppingt8 ~or corresponding van Hove fillings on th
upper horizontal scale! at T50.125. Horizontal lines atU53,6
denote the bare Hubbard repulsionU.
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the noninteracting susceptibility with momentaQd5(p
2d,p) is the largest whent8Þ0. The incommensurate wav
vectors are plotted in Fig. 5 as a function oft8. One can see
that the degree of incommensurability is strongly tempe
ture dependent, and that it increases with increasing temp
ture.

In the second region of the TPSC phase diagr
dx22y2-wave superconductivity is the leading instability.

FIG. 4. The TPSC phase diagram as a function of next-near
neighbor hoppingt8 ~lower horizontal axis!. The corresponding van
Hove filling is indicated on the upper horizontal axis. Crossov
lines for magnetic instabilities near the antiferromagnetic and
romagnetic wave vectors are represented by filled symbols w
open symbols indicate instability towardsdx22y2-wave supercon-
ducting. The solid and dashed lines below the empty symbols sh
respectively, forU53 and U56, where the antiferromagneti
crossover temperature would have been in the absence of the s
conducting instability. The largest system size used for this ca
lation is 204832048.

FIG. 5. Incommensurate wave vectorQd5(p2d,p) where the
maximum of the noninteracting susceptibility is located as a fu
tion of next-nearest-neighbor hoppingt8 at van Hove fillings. Dif-
ferent lines correspond to different temperatures. Givent8 and a
crossover temperature in the TPSC phase diagram, one can us
present figure to find out the incommensurate wave vector at w
the instability first occurs.
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this regime the transition temperature todx22y2-wave super-
conductivity appears higher than the temperature at wh
the antiferromagnetic correlation length becomes larger t
about 25. The latter crossover lines are denoted by the s
(U53) and by the dashed lines (U56) in Fig. 4. Note that
dx22y2-wave superconductivity is here induced by inco
mensurate antiferromagnetic fluctuations. While hig
temperature superconductors are not generally close to
Hove singularities, incommensurate dynamic spin fluct
tions are concomitant withdx22y2 superconductivity in these
compounds.37

Finally, the third regime occurs atut8u.0.33 where the
ferromagnetic susceptibilityxsp(0,0) is the leading one a
low temperatures. Ferromagnetism occurs because of th
verging density of states at the van Hove singularity.

Note that forU infinitesimally small the phase boundarie
happen close to zero temperature. Disregarding supercon
tivity for the moment, let us consider where the phase bou
ary between antiferromagnetism and ferromagnetism wo
be at smallU. In that case, the asymptotic behavior of t
Lindhard function nearq50 andq5Q is, respectively,21

x0~0,0!; ln@1/max~m,T!#/A12R2,

x0~Q,0!; ln@1/max~m,T!# ln@~11A12R2!/R#,

with R[2t8/t so that, looking at the equality of the coeffi
cients of the logarithms, one finds that the change from
tiferromagnetic to ferromagnetic behavior occurs atut8u
50.27 instead ofut8u50.33 as found above.24,38 To under-
stand the difference between these two results, we nee
look at subdominant corrections. For example, a numer
fit reveals thatx0(Q,0).0.5210.24 log10(1/T). This means
that for the leading term with a logarithmic structure to b
say, about ten times larger than the subdominant term,
temperature should be as low as 10220. The correspondingU
~or Usp) that satisfies 15U ~or Usp)x0(Q,0)/2 at this tem-
perature is very small, namely, 0.4t. Therefore, unlessU is
very small, the next leading term plays an important role a
a straightforward application of the asymptotic form~taking
only the leading term! is not justified. ForU56 and U
53, for example, TPSC shows that near the antiferrom
netic to ferromagnetic boundary, the crossover temperatu
of order 1022 and 1023, respectively. For this temperatur
the subleading term 0.52 is comparable to the logarith
contribution.

The TPSC phase diagram is in qualitative agreement w
the TCRG phase diagram.19 In addition, the critical valuestc8
for the stability of superconductivity and ferromagnetism a
the same in both approaches. But in contrast with the TC
ferromagnetism in TPSC occurs at very low temperatu
and increasingut8u does not lead to a dramatic increase
crossover temperature. One can see from Fig. 4 that the
cal values oft8 for the stability of ferromagnetism are un
changed for differentU, whereas the criticalutc8u for the sta-
bility of dx22y2-wave superconductivity decreases w
increasing coupling strengthU.

The fact that the crossover temperature towards ferrom
netism depends even more weakly ont8 in TPSC than in
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RPA can be explained by the following simple argume
Taking into account Kanamori’s improvement3 of the naive
Stoner criterion for ferromagnetism, we expect that t
crossover temperatureTX can be roughly approximated by

TX;T0expS 2
1

r~EF!Ueff
D , ~11!

where T0 is a constant,r(EF)5x0(0,0)/2, andUeff is the
renormalized effective interaction (Usp in the case of TPSC!.
We have already explained in the context of Fig. 3 that
increase withut8u of the weight of the logarithmic singularity
in the density of states at the Fermi level leads to a decre
of Usp , so the crossover temperature is almost constan
TPSC.

A distinctive feature of the TPSC phase diagram is t
the crossover to ferromagnetism generally occurs at a m
lower temperature than the crossover to antiferromagnet
This partially comes from the peculiarity of the temperatu
dependence of the zero-frequency limit of the noninteract
particle-hole susceptibility. To demonstrate this, let us use
an estimate for the crossover temperatures in TPSC, the
criterion Eq.~10! with U replaced byUsp and let us look for
values of the temperature when the left-hand side of t
equation becomes small~it will vanish only at zero tempera
ture!. At small ut8u the leading noninteracting staggered su
ceptibility x0(Q,0) behaves like (lnT)2 with temperature,
while for ut8u.0.33 the leading noninteracting uniform su
ceptibility x0(0,0) scales asu ln Tu. We find that these suscep
tibilities have comparable size for temperaturesT*1, while
the divergences ofx0(Q,0) andx0(0,0) begin, respectively,
at T,1 andT!1. Therefore, since the Stoner criterion E
~10! is satisfied in RPA with bareU53,6 at temperaturesT
*1, RPA shows the same temperature scale for ferrom
netism and antiferromagnetism. But in TPSC the stro
renormalization of the interaction strengthUsp,U means
that the crossover occurs for larger values ofx0(Q,0) and
x0(0,0), in a regime where they already have different sca
sincex0(Q,0) for smallut8u starts to grow logarithmically a
much higher temperature thanx0(0,0) for largeut8u. Thus,
the crossover to antiferromagnetism in TPSC occurs at m
higher temperatures than the crossover to ferromagnetis

Another interesting feature of the TPSC phase diagram
U53 is that the crossover temperature for antiferrom
netism is of the same order of magnitude as that of
TCRG result of Ref. 19, whereas the crossover to ferrom
netism is at a much lower temperature than that observe
the TCRG calculations. The naive explanation is as follow
Let us assume that the approximate mean-field-like exp
sion Eq. ~11! for TX has meaning both within TPSC an
within TCRG except thatUe f f has a different value in both
approaches. Simple algebra then shows that the relation
tween the crossover temperatures for TPSC and TCRG in
ferromagnetically fluctuating regime is

TFM
TCRG

TFM
TPSC

5S T0

TFM
TPSCD 121/a

,

5-7
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with a5Ueff
TCRG/Usp characterizing the different renormaliza

tions of U in both approaches. Whena51, both crossover
temperatures are equal. Fora.1 the TCRG value forTX is
larger than for TPSC while the reverse is true whena,1.
Using the numerical result39 for the TCRG effective interac
tion at U53 andut8u;0.45 we havea51.4–1.8. Then, re-
placing T0 by the bandwidth 8t and taking TFM

TPSC53.4
31023 corresponding tout8u>0.42 we obtain the estimat
TFM

TCRG/TFM
TPSC'10–30. This agrees with the crossover te

peratures extracted from the TPSC~Fig. 4! and the TCRG
phase diagrams~Fig. 1 of Ref. 19!. Similarly in the antifer-
romagnetically fluctuating regime nearut8u50, we use the
improved mean-field estimate forTX ,

TX;T0exp~2A8t/Ueff!,

to extract the following relation between the crossover te
peratures:

TAFM
TCRG

TAFM
TPSC

5S T0

TAFM
TPSCD 121/Aa

.

Using the value ofUsp from the TPSC and the TCRG effec
tive interaction39 at U53 and ut8u;0.1 we have a
51.0–1.4. This leads toTAFM

TCRG/TAFM
TPSC'1 –2.5 forTAFM

TPSC;4
31022 at ut8u;0.1, which is in good agreement with th
data extracted from the phase diagrams.

As mentioned at the beginning of this section, the cro
over temperaturesTX for the magnetic instabilities in TPSC
have been chosen such that the enhancement factor is
to 500. The enhancement factor scales like the square o
correlation lengthj2. For such largej2 the value ofTX is
rather insensitive to the choice 500 since the correla
length grows exponentially. Our criterion forTX leads to a
good estimate of the real phase-transition temperature
j5` when a very small coupling term is added in the th
spatial direction. The dependence ofTc on coupling in the
third dimension has been studied, within TPSC, in Ref.
The latter reference also contains expressions for the rela
between the enhancement factor andj2. On the other hand
TX depends more strongly on the precise criterion if
choose a moderate value of the enhancement factor. In
ticular, the TPSC value ofTX in the antiferromagnetic fluc
tuation region increases by a factor 2–5 if we choose 10
the enhancement factor, close to the value41 chosen in Ref.
19. In this case,TX agrees essentially perfectly with th
value obtained in the TCRG phase diagram.

Note however that our estimate for the superconduc
transition temperature is smaller than that obtained with
TCRG of Ref. 19. Because in TPSC the pairing fluctuatio
do not feed back in the antiferromagnetic fluctuations, t
result suggests that the feedback, usually included in TC
enhances superconductivity in this region of the phase
gram. Such a positive feedback effect was also found in
RG calculations of Refs. 42 and 17. On the other hand,
RG approach of Ref. 24 suggests instead that antiferrom
netism and superconductivity oppose each other. So
particle-particle diagrams were however neglected in the
ter approach. In TPSC, antiferromagnetic fluctuations h
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dx22y2-wave superconductivity as long as they are not stro
enough to create a pseudogap, in which case they are d
mental to superconductivity.30

The above-mentioned renormalization-group calculatio
were done in the one-loop approximation without self-ene
effects. By contrast, in the RG work of Ref. 43, self-ener
effects showing up at two loops were included in the cal
lation for thet850 model. There it was found that dressin
the flow equations for AFM and superconducting respo
functions with the one-particle wave-vector-depend
weight factorsZ results in a reduction of both AFM an
superconducting correlations, the latter suppression be
more pronounced. Within TPSC, the momentum- a
frequency-dependent self-energy effects that appear inG(2)

in the pairing susceptibility Eq.~9! do tend to decrease th
tendency to pairing when AFM fluctuations become ve
strong at and near half-filling,30 in qualitative agreement with
the RG result.43 In particular, in the presence of an AFM
induced pseudogap, the tendency to superconductivity is
creased compared to what it would be if we replacedG(2) by
G(1) everywhere.~Such a replacement is not allowed with
our formalism!. Because of the excellent agreement betwe
TPSC at the first level of approximation and quantum Mo
Carlo calculations,28,29momentum- and frequency-depende
self-energy effects are not expected to be very important
AFM fluctuations unless we are deep in the pseudogap
gime. They have not been taken into account at this po
They might be more important in the case of ferroma
netism, which is already a very weak effect in TPSC. This
discussed below.

C. Additional effects that may be detrimental
to ferromagnetism

The TCRG phase diagram19 is computed at the one-loo
level. Self-energy effects occur at the two-loop level. Sim
larly, self-energy effects in TPSC are calculated at the sec
level of approximation. Since analytical continuation
imaginary-time results is difficult at low temperature, we e
timate the quasiparticle weight with the help of the quant
z8(T) defined in Refs. 28 and 44 by

z8~T!522G~kF ,b/2!5E dv

2p

A~kF ,v!

cosh~bv/2!
. ~12!

Physically, this quantity is an average of the single-parti
spectral weightA(kF ,v) within T of the Fermi level (v
50). When quasiparticles exist, this is a good estimate
the usual zero-temperature quasiparticle renormalization
tor z[(12]S/]v)21. However, in contrast to the usualz,
this quantity gives an estimate of the spectral weig
A(kF ,v) around the Fermi level, even if quasiparticles d
appear and a pseudogap forms.

Figure 6 shows the quasiparticle renormalization factorz8
at a valueut8u50.4 where ferromagnetic fluctuations dom
nate at very low temperatures. One observes a progres
decrease ofz8(T) with decreasing temperature. We check
that the single-particle spectral functionA(kF ,v) begins to
show a smallpseudogapat the temperature wherez8 begins
to decrease significantly. Since the ferromagnetic fluctuati
5-8
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are not yet strong enough at that temperature to crea
pseudogap, this effect is completely driven by the singu
density of states at the van Hove filling. In other word
second-order perturbation theory should suffice to obse
the effect. The analogous feature was previously found
one of the authors and his co-workers45 in a second-order
perturbation study of the nearest-neighbor two-dimensio
Hubbard model at half-filling. Self-energy effects near v
Hove points have also been discussed in Ref. 46. The ra
strong suppression of spectral weight at the Fermi wave v
tors for temperatures larger than the crossover tempera
found in the above section would probably reduce the t
TX or even completely eliminate the possibility of a ferr
magnetic ground state if we could include the feedback
this self-energy effect into the spin susceptibility.

The ferromagnetic fluctuation regime is also very sen
tive to doping within TPSC. In fact, deviations of the fillin
by 2–3% away from the van Hove filling remove the cros
over to the ferromagnetic regime.

There is also an argument that suggests that a Stoner
ferromagnetic ground state is unstable in the tw
dimensional Hubbard model. Within RPA in the ferroma
netic state,47 the spin stiffness constant for spin waves in t
ferromagnetic state is proportional to minus the second
rivative of the density of states at the Fermi level.48 Since the
density of states as a function of energy~away from the van
Hove filling! has a positive curvature in two dimensions,
leads to a negative spin stiffness constant and thus to
instability. This argument is based on the noninteracting d
sity of states. The pseudogap effect mentioned ab
changes the curvature of the density of states at the F
level and may stabilize the ferromagnetic state.

IV. CONCLUSIONS

As found within temperature-cutoff renormalization gro
~TCRG!,19,27 TPSC suggests that ferromagnetism may
pear in the phase diagram of the 2Dt-t8 Hubbard model at
van Hove fillings for weak to intermediate coupling. It
striking that the overall phase diagrams of TCRG and TP
have some close similarities. As in TCRG, we find, Fig.
that for small negative values of the next-nearest-neigh

FIG. 6. Temperature dependence ofz8(T) defined by Eq.~12! at
the van Hove filling corresponding tout8u50.4.
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hopping the leading instability is a spin-density wave w
slightly incommensurate antiferromagnetic wave vector~Fig.
5!. We could find incommensurability at smallut8u only for
very large lattice sizes. The TCRG seems to indicate t
very close tout8u50, the wave vector remains pinned
(p,p) ~Ref. 27! but that could be due to the fact that co
pling constants in TCRG represent a finite region in wa
vector space and hence very small incommensurabilities
not be resolved. For intermediate values ofut8u we also find
dx22y2-wave superconductivity. The precise value ofut8u for
the onset ofdx22y2-wave superconductivity depends som
what on the criterion used for the crossover temperature.
clear difference with TCRG, however, is that the range
ut8u where superconductivity appears increases withU
whereas it decreases withU in TCRG.27 At large ut8u
.0.33t, a crossover to ferromagnetism occurs as a resul
the diverging density of states. TPSC cannot tell us w
happens below the crossover temperature, but that temp
ture is the relevant one in practice since any small coup
in the perpendicular direction would lead to a real pha
transition.

The critical value for ferromagnetism,ut8u50.33t, coin-
cides with that found in TCRG.19,27 This value of ut8u is
smaller than that found within theT-matrix approximation,21

but that may be because of the cutoff to the van Hove s
gularity imposed by the small system sizes used in that
proach. The critical value for ferromagnetism,ut8u50.33t,
also differs from the valueut8u50.27t obtained in Ref. 24 in
the limit of zero temperature. We have explained in S
III B that for the crossover to occur sufficiently close toT
50 for the arguments of Ref. 24 to be correct, one ne
values ofU that are unrealistically small. At finiteU ~we
studied U53 and U56), subdominant corrections to th
logarithms shift the criticalut8/tu50.27 found in Ref. 24 to
the valueut8/tu50.33 found by us and TCRG.

The differences between TCRG and other approaches
well as their strengths and weaknesses, are well explaine
Refs. 19 and 27. The smaller temperature scale for cross
to dx22y2-wave superconductivity in TPSC is a differenc
worth noting between our approach and TCRG.19 This may
be due to the fact that our calculations include self-ene
effects which are absent43 in one-loop TCRG. But the mos
striking difference is the temperature scale for ferroma
netism that in our case remains extremely small away fr
the critical ut8u50.33t.

We have shown that the low-temperature scale for
crossover to ferromagnetic fluctuations comes from K
amori screening that strongly renormalizes the effective
teraction~this effect is smaller in the antiferromagnetic r
gime!. In TPSC this renormalization comes from th
constraint that the spin response function withUsp should
satisfy the local moment sum rule, Eq.~4!. This causes the
crossover temperature to ferromagnetic fluctuations to
pend weakly ont8 and to remain small. As in theT-matrix
approximation,21 Kanamori screening seems much strong
than what is obtained with TCRG. The latter approach p
haps does not include all the large wave vectors and la
energies entering the screening of the effective interactio

Within TPSC then, the tendency to ferromagnetism see
5-9
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very fragile. In addition, we checked that in TPSC ferroma
netism disappears for electron concentrations that are
very slightly~2–3%! away from van Hove fillings, in overal
agreement with the results of the TCRG.19,27So the question
of the existence of Stoner-type ferromagnetism at weak
intermediate coupling is not completely settled yet, desp
the positive signs and the concordance of the most relia
approaches. We have estimated the electronic self-energ
fects for largeut8u and found that the quasiparticle renorma
ization factor is reduced significantly at temperaturesT
,0.1. As a result, the single-particle spectral functi
A(kF ,v) starts to show a small pseudogap which, at h
temperature, is completely driven by the singular density
states, and not by the ferromagnetic fluctuations that ap
only at very low temperature. This rather strong suppress
of spectral weight at the Fermi wave vectors forT.TX may
further reduceTX or even completely eliminate the crossov
to a ferromagnetic ground state. We have argued in Sec. I
that other factors could be detrimental to a ferromagn
ground state in two dimensions. In particular, as is the c
with RG calculations,19,27 a consistent treatment of the ele
tronic self-energy effects on the spin response function
mains an open issue.

Another interesting problem for future investigations
the question of whether ferromagnetism could compete w
-

s

ys
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the Pomeranchuk instability, i.e., a spontaneous deforma
of the Fermi surface reducing its symmetry from the tetra
onal to the orthorhombic one. Temperature cutoff RG~Refs.
27,49! disagrees with a suggestion16,20,50 that this is one of
the possible leading instabilities of the 2Dt-t8 Hubbard
model at van Hove fillings.

Note added in proof:B. Binz, D. Baeriswyl, and B.
Douçot @Ann. Phys.~Leipzig! 12 ~2003!; cond-mat/0309645#
have recently questioned the application of one-loop ren
malization group to ferromagnetism, suggesting that
error produced by the one-loop approximation is of t
same order as the term which produces the ferromagn
instability.
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Sénéchal, André-Marie Tremblay, and Claude Bourbonnai
5-10



,

s

S
e

-

WEAK FERROMAGNETISM AND OTHER INSTABILITIES . . . PHYSICAL REVIEW B 68, 214405 ~2003!
CRM Series in Mathematical Physics~Springer, New York,
2003!.
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