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A self-consistent theory of both spin and charge fluctuations in the Hubbard model is presented. It
is in quantitative agreement with Monte Carlo data at least up to intermediate coupling (U ~ 8t).
It includes both short-wavelength quantum renormalization effects, and long-wavelength thermal
fluctuations, which can destroy long-range order in two dimensions. This last effect leads to a small

energy scale, as often observed in high-temperature superconductors.

The theory is conserving,

satisfies the Pauli principle, and includes three-particle correlations necessary to account for the

incipient Mott transition.

The model introduced initially by Hubbard® for itin-
erant magnets is now widely used for high-temperature
superconductors (HTSC) and other materials with strong
interelectron interaction. Despite the apparent simplic-
ity of the model, its properties remain poorly understood
in the strong to intermediate coupling regimes relevant
for HTSC. Much experimental information on the mag-
netic fluctuations of these materials is now available from
neutron scattering and nuclear magnetic resonance. A
ubiquitous feature of the data is the presence of an un-
explained small energy scale. The one-band Hubbard
model near half-filling should contain this feature if it is
the correct model for HTSC. Previous explanations®? of
the magnetic correlations taking into account short-range
quantum correlations ( T-matrix effects) describe most of
the Monte Carlo data except in the experimentally rel-
evant regime. To our knowledge no explanation of the
charge structure factor has appeared.

In this paper, we present a simple self-consistent ap-
proach to the two-dimensional (2D) Hubbard model that
gives, without adjustable parameter, quantitative agree-
ment with Monte Carlo data for spin and charge struc-
ture factors and susceptibilities at all fillings up to quite
strong coupling. The approach takes into account not
only the short-range quantum effects, but also the long-
range thermal fluctuations that destroy antiferromag-
netic long-range order in two dimensions at any finite
temperature (Mermin-Wagner theorem). This is the
key physical ingredient which leads to a small energy
scale, and associated large correlation length, in the mag-
netic fluctuations. Previous approaches which included
the long-range thermal fluctuations in the 2D Hubbard
model were never applied to the incommensurate case rel-
evant for HTSC. Furthermore, they are based on mode-
coupling theory,* which neglects charge fluctuations and
does not include the effect of short-range quantum corre-
lations, which are important not only for a quantitative
description of the model but also for determining the na-
ture of the ground state.

We first present our approach, discuss physical con-
sequences, and finally compare with Monte Carlo data.
We consider the one-band Hubbard model with on-site
repulsive U. Our approach is motivated by the local
field approximation, which was successful in the elec-
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tron gas.® We start from the equation of motion for the
particle-hole operator p,,(l K ) = c:: ¢p ., in a weak ex-
ternal field ¢p, which is coupled to the partial density
operator ny, = Po l,l_) = cl_’oc,-:a.6 After simple trans-
formations, the term that contains the interaction in the

equation of motion for pa(f, I ) is of the form

Ulpe (1 0)n;_,) = (po (5,0 _ )] (1)

All operators contain the same time label, which is not
explicitly written. The usual random phase approxima-
tion (RPA) corresponds to the neglect of two—particle cor-
relations, namely one approximates (p, (l l l l_§) by
(p,,(l,l7 _a(l,l_) ). This is clearly a poor approx1ma-
tion for on—site interactions because, as can be seen from
(1), three of the four creation or annihilation operators
in the correlator (p,(I,1)p_o(l,1)) are on the same lat-
tice site I. There is thus a strong correlation between
two particle-hole pairs even when | — /| >> 1 (the lat-
tice constant is taken to be unity). We make use of this
specific feature of the on-site interaction and neglect the
dependence of the correlation coefficient on the lattice
index !’ which appears only once in the two-particle cor-
relator. Mathematically, our ansatz is that the response
of (po (I, 7 )n;_,) to the external field ¢ is given by

8o[(po (LT g _ )] = dulany (L1 oo (L 1))(nz_ )], (2)
where
(g oni o) — (N 500,000 1)

()

is the pair correlation function between electrons of spin
o and o’ on the respective lattice sites I and '.

It is important to realize that the pair correlation func-
tion in (1) and (2) cannot yet be taken equal to its equi-
librium value g4, (I,5;t) # g1y (0) because of the weak
external field ¢i:a’ In linear response the most general

form for g4 ¢(l-:l-§ is

7 1891 (L 1) ,
l7 it) = 7
50 = on 0+ 3 [ dv Gt (),

-

Yoo' (l’?) =

®3)
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where n;(t) = ng, (t) + ny, (t) and we use that in the
paramagnetic state

g1y (f, I; t) o9 (l—: I; t)
§n o ()

=4 ([=0"t-1t).
Sng @) w0

Note that the terms describing the response of g4 i(l-: L t)
to the external field enter the equation of motion only
in a form that is symmetric in spin indices. Since the z
component of spin S, = ny — n| is antisymmetric in n,
and all equations are linear, it immediately follows that
g; . (f —t—t ) enters the equation for charge but not for
spin. This important simplification occurs because the
Pauli principle precludes the appearance of terms like
ai(g% # g(%lf)— in the case of on-site interaction. After

standard transformations (see, for example, Ref. 6) the
spin and charge susceptibilities have the RPA form but
with a renormalized effective interaction, which is differ-
ent for spin (Uyp) and charge (Uch):

Usp = g1 (0) U; Ueh = [g14 (0) + 691y (w, )]U,  (4)

where dg1) (v,9) = 9}, (w,9) 3, 93, (w,q) is the Fourier
transform of gh (f —It- t') and n is the band filling
(half-filled case corresponds to n = 1). 4¢3 (w,q) is a
three-particle correlation function, so that further sim-
plification will be needed to calculate the charge suscep-
tibility Xch (w, q). However, no further approximation is
needed for the spin susceptibility xsp (v, §) ! Indeed, due
to the Pauli principle, g4+ (0) = 0 so the spin part of the
problem may be closed by using g4} (0) = —2g,p(0) with
gsp (L) = [g11 (L) — g11(1,1")]/2 and the fluctuation-
dissipation theorem (FDT) for spin:

2 s '
9gsp L) = % f (éi,r?’f [SSP (@) —1] elT -t ):

T Xo(iwm,q) 5
Sep (@) = 5 21_(U.:/2)XU(W,,.,®- (5)

The first equation is the definition of the spin structure
factor; the second is a convenient form of the FDT with
temperature T and bosonic Matsubara frequencies iw,,.
The integral is over the first Brillouin zone. The defini-
tion of xo (iwm, ¢) is the same as in Ref. 6.

For ég+) (w,q), we use the simplest ansatz, namely,
that it is a constant dgy;, which we determine self-
consistently using the Pauli principle g4+ (0) = 0, the
definition for the static charge structure factor
, 1 [ d’q
gch (lal) 1+ n (271’)2

and the FDT for charge. We thus have a simple the-
ory with only two parameters g4, (0) and dgq; that are
found self-consistently. It can be explicitly checked that
charge, spin, and energy are conserved. As with all self-
consistent theories, the usefulness of the approach can be
judged only a posterior: by comparison with numerical or
exact results. We provide such comparisons later in the
paper.

The absence of a magnetic phase transition at any
finite temperature in 2D follows immediately from the

[Sen (@) — 1] 701 (6)
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above approach. Define the mean-field critical value of
U by Umf,c = 2/XO (0; q‘max)v where xo (iwma ‘Tmax) is the
susceptibility of noninteracting electrons and gmax is the
value of ¢ at which the static susceptibility has its max-
imum. If Uy, = g4+,(0)U in (5) was large enough for the
transition to occur, namely §U = [Up,5,c— g1 (0) U] =0,
then the ¢ integral for the static susceptibility (wm = 0)
in the expression for gsp(0) [Eq. (5)] would diverge log-
arithmically so that g4; (0) = —2gsp(0) would become
negative, in obvious contradiction with 6U = 0. Hence,
in our approach, magnetic fluctuations always push the
value of gy, (0) away from its critical value gﬁ) (0) =
Unmy,c/U at any finite temperature. Furthermore, for
a wide range of values of U > Upnyfc and T < Ty,
the system will be quite close to magnetic instability
(8U ~ 0), providing the basis for a generic explana-
tion of the small energy scale observed in HTSC. In the
regime in which the temperature is larger than this small
energy scale, the correlation length grows exponentially
€ x € oxx eo?t/T (£=2 = §U/Upny,c), reflecting the log-
arithmic divergence mentioned above. This is typical
behavior for systems at their lower critical dimension.
When a real quasi-two-dimensional system enters this
regime, small three-dimensional effects can easily stabi-
lize long-range order.

We digress briefly to speculate on how the phase di-
agram of a system with weak three-dimensional effects
would then look. We neglect effects, such as disorder,
which may become important when the small energy
scale U appears. We define a quasicritical temperature
Tqc as the temperature at which the enhancement of the
magnetic susceptibility £€2 = Xsp (0, §max) /X0 (0, Gmax) is
of order 500. Calculations for the nearest-neighbor Hub-
bard model show that £2 increases by an order of mag-
nitude when the temperature is reduced below T, by as
little as Tqc—T ~ 0.01 (all energies are in units of the hop-
ping integral t). In our theory, the emerging long-range
order is determined by the position of the maximum of
X0 (0,9). At T = 0, as soon as n # 1, two-dimensional
Fermi-surface effects® lead to a maximum with a cusplike
singularity in the (m, 7)—(m, 0) direction. The situation is
different at finite temperature where the maximum can
be at gmax = (m,m) even for n < 1. Figure 1 shows
a rough magnetic phase diagram obtained by approxi-
mating T, by Tyc (with U = 2.5). The insets show the
dependence of gy max [§max = (7, qy,max)] and of the en-
hancement factor £2 on temperature for three different
fillings. The filling n = 0.93 is marginal in the sense
that the shift of §nax from (m,7) occurs when the en-
hancement €2 is already quite large. We would expect
then that long-range order would be antiferromagnetic
for n > 0.93 and incommensurate spin-density wave for
0.89 < n < 0.93.

Let us now discuss the limit T — 0. In Fig. 2, we
show the renormalized spin interaction U,, as a func-
tion of the filling n for U = 2.5 and U — oo, together
with Up,¢,c (n). Remarkably, at low filling the value of
U, saturates to Uy, =~ 3.2 as the bare interaction in-
creases U — oo. This quantum effect was anticipated by
Kanamori,”? who argued that the largest value of U,y is
proportional to the kinetic energy cost to put a node in
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FIG. 1. Approximate phase diagram of the quasi-2D Hub-
bard model with 7. approximated by Tq.. The inset shows
the temperature dependence of gmax(T") and the enhancement
factor 5—2 = Xsp(0, Gmax)/X0(0, gmax) for three different fillings
n.

the two-body wave function where two electrons overlap.
At a sufficiently large filling, when Uy, (n) starts to fol-
low Up4,c (n) for T — 0, the paramagnetic state has an
instability at exactly T = 0. The existence of an upper
limit for U,p leads to the existence of a lower limit for the
filling 7c min = 0.685 below which there is no magnetic
phase transition at any U. This, in turn, means that only
spin-density waves with ¢ = (m,q,), gqu/7 C [0.74,1]
are possible. In particular, the ferromagnetic state does
not exist in the Hubbard model on a square lattice? and
there is also a temperature T' ~ 0.5 above which there
is no exponential regime for {(T") at any U where our
theory applies.

In the rest of this paper, we compare our theoreti-
cal results for infinite lattice with Monte Carlo simula-
tions. Finite-size effects are expected to become impor-
tant in simulations when the correlation length becomes
comparable with system size. The largest size effects
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FIG. 2. Filling dependence of U,p, and Unmy,c as T — 0.

T

FIG. 3. Temperature dependence of S, (7, ) at half-filling
n = 1. The solid line is our theory; symbols are Monte Carlo
data from Ref. 9.

are thus expected in Sy, (7, 7) at half-filling (n = 1).
This is shown in Fig. 3. The Monte Carlo data® follow
our theoretical curve (solid line) until they saturate to
a size-dependent value. We checked that finite-size ef-
fects for Sy, (¢) away from the antiferromagnetic wave
vector § = (m,m) are much smaller, so that, even for
8 x 8 systems, theory and simulations agree very well for
all other values of ¢ (not shown). Finite-size effects in
the spin structure factor Ss, (¢) are not too important
away from half-filling for the parameters shown in Figs.
4(a)-4(d). Obviously though, finite-size simulations can-
not reproduce the small incommensurability captured by
our theory at n = 0.8 in Fig. 4(d).

Figures 4(b) and 4(c) show that, even for relatively
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FIG. 4. Wave vector (¢) dependence of the spin and charge
structure factors for different sets of parameters. Solid lines
are our theory; symbols are our Monte Carlo data. Monte
Carlo data for n = 1 and U = 8 are for 6 x 6 clusters and
T = 0.5; all other data are for 8 x 8 clusters and T' = 0.2.
Error bars are shown only when significant.
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strong coupling (U ~ 8), the theory agrees very well
with both spin Sep (¢) and charge Sg (§) structure fac-
tors. However the theory should eventually break down
for U — oo. This can be seen in the half-filled case from
the fact that, for U — oo, the antiferromagnetic sus-
ceptibility remains constant in our theory while mapping
to the Heisenberg model with J = 4t2/U shows that it
should decrease with U. It seems, however, that large-U
asymptotic is reached for values of U much larger than
the bandwidth.

Figure 4(a) shows that our theory reproduces the im-
portant qualitative fact that the charge structure factor
Sch (¢;n) depends on filling in a nonmonotonous man-
ner. The decrease of S¢, (§) towards half-filling is a sig-
nature of the incipient Mott transition. The effect can be
seen because our approach takes into account both three-
particle correlations and the Pauli principle. Writing
the Pauli principle as a sum-rule ¥4{Sch (§) + Sep (9)] =
234 S0 (), the parameter g, which partially takes into
account three-particle correlations, must increase close to
half-filling in order to reduce Sc (¢) and compensate for
the increase in the contribution of the spin structure fac-
tor.

Our theory also explains the good fit of the dynam-
ical spin susceptibility Xxsp (iwm,q) obtained by Bulut,
Scalapino, and White3 using RPA with U,., = 2. Indeed,
for U = 4, n = 0.87 on 8 x 8 clusters, our calculations
give Usp = 2.05 with very little dependence on tempera-
ture. Bulut, Scalapino, and White® have also shown that
their Monte Carlo data for the self-energy ¥ (iwy,,q) can
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be reasonably well fitted by the Berk-Schrieffer formula!®
with the same U, = 2. In our approach, the expression
for ¥ (iwm,, q) in terms of susceptibilities should come at
the next level of approximation. Bulut et al.!! have also
fitted a number of experiments in HTSC by fine tuning
the value of Uy, close to a magnetic instability (6U ~ 0).
In our approach, a wide range of bare values of U natu-
rally renormalizes to such a situation.

In conclusion, imposing the Pauli principle as well as
self-consistency through the fluctuation-dissipation the-
orem, we have formulated a simple theory that also sat-
isfies conservation laws and gives, without adjustable
parameter, a quantitative explanation of Monte Carlo
data for both spin and charge structure factors as well
as susceptibilities up to intermediate coupling. Both
short-wavelength quantum renormalization effects and
long-wavelength thermal fluctuation effects, which de-
stroy long-range order in two dimensions, are accounted
for. The latter effect naturally leads to a small energy
scale for a wide range of parameters, possibly giving a
microscopic origin for the small energy scale observed in
experiments on high-temperature superconductors.
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