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Role of Symmetry and Dimension in Pseudogap Phenomena
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The attractive Hubbard model ind � 2 is studied through Monte Carlo simulations at intermediate
coupling. There is a crossover temperatureTX where a pseudogap appears with concomitant precursors
of Bogoliubov quasiparticles that arenot local pairs. The pseudogap inA�kF , v� occurs in the
renormalized classical regime when the correlation length is larger than the direction-dependent ther
de Broglie wavelength,jth � h̄yF�k��kBT . The ratioTX�Tc for the pseudogap may be made arbitrarily
large when the system is close to a point where the order parameter has SO�n� symmetry withn . 2.
This is relevant in the context of SO�5� theories of highTc but has more general applicability.

PACS numbers: 71.10.Fd, 71.10.Hf, 71.10.Pm, 74.20.Mn
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Normal state pseudogaps observed in angle-resolv
photoemission experiments [1] and tunneling [2] have b
come the focus of much of the research on high tem
perature superconductors. Theoretically, strong-coupli
models of this phenomenon include repulsive doped i
sulator models [3] and attractive models with preforme
local pairs [4–6]. At intermediate coupling, resonant pa
scattering has been invoked [7]. In weak coupling, a
tiferromagnetic or superconducting fluctuations also lea
to pseudogap formation before long range order is esta
lished [8–11]. Finally, arguments about the relevance
phase fluctuations [12] do not specify whether the sma
superfluid density comes from strong coupling or from
thermal fluctuation effects.

Although the effect of superconducting fluctuation
on the density of states was studied long ago [13], t
relevance of these critical fluctuations on pseudog
phenomena in high temperature superconductors has b
questioned mainly because, even in low dimension, t
critical region should be quite small compared with th
size of the pseudogap region observed in high temperat
superconductors. Indeed, even for the Kosterlitz-Thoule
(KT) transition in two dimensions, the range of tempera
tures where superconducting phase fluctuations occ
is of order kBT 2

c �EF unless disorder depressesTc [14].
Another question for the original critical-fluctuation cal
culations is that, contrary to density of states pseudoga
a pseudogap can appear in the single-particle spec
weight A�kF ,v� only when the fluctuation-induced scat
tering rate at the Fermi surface ImS�kF , v � 0� increases
with decreasing temperature, a behavior that is oppos
to that predicted by the traditional phase-space argume
of Fermi liquid theory.

The last objection has already been answered [8]
showing that ind � 2 the Fermi liquid arguments fail
when one enters the so-called renormalized classi
(RC) regime of fluctuations (d � 3 is the upper critical
dimension [8]). This RC regime is the one wher
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critical slowing down leads to increasing dominanc
of classical fluctuations�h̄vc , kBT � as temperature is
lowered. However, the question of the large temperat
range where pseudogaps appear has to be addre
theoretically both at the qualitative and at the quantitati
levels. On the quantitative side, the dependence of
critical region on interaction strength and quasi tw
dimensionality is not obvious, but it has been argu
[15] that specific models can give large critical region
even at intermediate coupling. On the qualitative sid
a factor that may considerably enlarge the size of t
pseudogap regime is the proximity to a point where t
order-parameter symmetry is SO�n� with n . 2. Indeed,
in d � 2 the critical region can become much large
when n . 2 since then the Mermin-Wagner theorem
implies that the transition temperature is pushed down
T � 0. We argue that both conditions, namely,d � 2
and higher symmetry, are generic for high temperatu
superconducting materials. Indeed, in the underdop
region, where the pseudogap is largest, these mater
are highly anisotropic (quasi two dimensional) and
has been proposed that the order parameter may h
both antiferromagnetic and superconducting charact
corresponding to approximate SO�5� symmetry [16].

The attractive Hubbard model may be used to illu
trate the properties of pseudogaps that appear in such
uations of approximate high symmetry ind � 2. For
our purposes, the important characteristic of this mod
is that the long-wavelength critical behavior is as fo
lows for all values of interactionU. At half filling,
there is a zero-temperature phase transition that breaks
finite-temperature SO�3� symmetry [17] while away from
half-filling, there is a KT transition at finite temperature
The corresponding ground state breaks SO�2� symmetry.
While the details of this model are clearly inappropriate f
high temperature superconductors, it is useful to illustrat
number of general points that should be applicable to mo
els with transition temperatures that are pushed down fr
© 1999 The American Physical Society
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their mean-field value by a combination of low dimension
and high order-parameter symmetry SO�n . 2� [16].

In this paper, we present Monte Carlo simulations for
the d � 2 Hubbard model at U � 24t, a value that is
slightly on the BCS side of the BCS to Bose-Einstein
crossover curve �U , U�Tmax

c �� [18]. We use units where
nearest-neighbor hopping is t � 1, lattice spacing is unity,
h̄ � 1, and kB � 1. Previous numerical work charted
the phase diagram [19]. They have also investigated the
pseudogap phenomenon mostly in strong coupling where,
we stress, the physics is different from the case discussed
here [18,20,21]. On the weak-coupling side of the BCS to
Bose-Einstein crossover, there have been numerical studies
of KT superconductivity [22] as well as several discussions
of pseudogap phenomena in the spin properties and in the
total density of states at the Fermi level [5,20,23]. The
only study of A�k, v� was restricted to regions far from
the SO�3� symmetric point [21].

Here we establish a dynamical connection between the
appearance of the RC regime in the pairing collective
modes and pseudogap formation in single-particle quan-
tities. In particular, we show the following: (a) Close
to a high symmetry point, pseudogaps can appear at a
crossover temperature TX that scales with the mean-field
transition temperature while the real transition may occur
at much lower temperature, Tc, leading to a wide tem-
perature range for the pseudogap. (b) At the crossover
temperature, one enters the RC regime where the char-
acteristic frequency for fluctuations becomes smaller than
the temperature. (c) Pseudogaps in weak-to-intermediate
coupling do not require resonance in the two-particle cor-
relations [24]. (d) To have a pseudogap in A�kF ,v� for a
given wave vector, it is not enough to have the collective
mode (two-particle) correlation length satisfy j .1. It is
necessary that j becomes larger than the single-particle
thermal de Broglie wavelength jth � yF�k��T . This im-
plies, in particular, that even for an isotropic interaction,
as temperature decreases a pseudogap opens first near the
zone edge, where yF is small, and it opens last along the
zone diagonal where yF is largest. This anisotropy would
be amplified for an anisotropic interaction of d-wave type
[15]. For U � 24, the condition j . jth is realized near
the zone edge for j not so large. Analytical arguments for
the above results have appeared elsewhere [9,10,25].

Let us first recall a few results at half filling, �n� �
1, where the chemical potential m vanishes. There the
canonical transformation ci# ! �21�ix1iy c

y
i# maps the at-

tractive model onto the repulsive one at the same fill-
ing. The q � 0, s-wave superconducting fluctuations and
the Q � �p , p� charge fluctuations are mapped onto the
three components of antiferromagnetic spin fluctuations of
the repulsive model and hence they are degenerate. Be-
cause of this degeneracy, the order parameter at half filling
has SO�3� symmetry [17], hence, by the Mermin-Wagner
theorem, in two dimensions the phase transition is at Tc �
0. Results for the attractive model are easily extracted
from simulations of the canonically equivalent repulsive
model. The pair structure factor SD � �DyD 1 DDy�
with D � �1�

p
N�

PN
i�1 ci"ci# and the Q � �p, p� charge

structure factor Sc � �rQr2Q� are identical, showing an
increase as temperature decreases and then size-dependent
saturation. The sudden rise of SD as temperature decreases
indicates a crossover to a RC regime with a concomi-
tant opening of the pseudogap [8,9,26] in A�kF,v�. The
crossover temperature is a sizable fraction of the mean-
field transition temperature.

Slightly away from half filling, the SO�3� symmetry is
formally broken by the chemical potential [17] since it
couples only to the charge part of the triplet. However,
in the regime where the temperature is larger than the
symmetry breaking field, the symmetry is approximately
satisfied. [10] For filling �n� � 0.95, we have T . jmj
for the whole range of temperature shown in Fig. 1(a)
(m � 20.07 at T � 0.125). In this figure, superconduct-
ing (SD, filled symbols) and charge (Sc, open symbols)
structure factors are of comparable size when one enters
the RC regime, showing that we have approximate SO�3�
symmetry for various sizes L 3 L. The beginning of the
RC regime, that occurs at a temperature nearly identical
to the crossover temperature [8] TX identified at half fill-
ing, is signaled by the increase in the magnitude of corre-
lations. Eventually, the concomitant increase of j leads
to the size dependence apparent at lower temperature in
Fig. 1(a). The plot in Fig. 1(a) resembles the result at
half filling. [9,27]. The near equality of superconducting
and charge fluctuations at the crossover to the RC regime
should be contrasted with the case �n� � 0.8 in Fig. 1(b)
where the charge fluctuations show basically no critical
behavior when the superconducting correlations begin to
do so. Hence, at this filling, there is little SO�3� sym-
metry left at TX . This is expected since the symmetry
breaking field jm�TX�j � jm�0.25�j � 0.26 is comparable
to TX . One basically enters directly into the RC regime of a
SO�2� KT transition [19]. In this regime dTc�n��dn . 0.
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FIG. 1. Pair (filled symbols) and charge (open symbols)
structure factors for U � 24 and various system sizes.
(a) Filling �n� � 0.95. (b) Filling �n� � 0.8.
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Let us go back to the filling �n� � 0.95. At this filling,
it has been estimated [19] that Tc , 0.1 and dTc�n��dn ,

0. We already showed that at this filling one has ap-
proximate SO�3� symmetry. One can confirm that the
increase of SD and Sc at TX comes from RC fluctua-
tions by calculating the spectral weight for superconduct-
ing fluctuations x

00
D (imaginary part of the T matrix),

x
00
D�v� �

R
dt

1
2 ��D�t�, Dy��eivt . The even part [28] of

x
00
D�v��v was obtained from a Monte Carlo calculation

of the imaginary-time quantity �D�t�Dy 1 Dy�t�D� fol-
lowed by maximum entropy inversion [29]. The even part
of x

00
D�v��v is plotted in Fig. 2 for an 8 3 8 system and

various temperatures. The symbols are for a 6 3 6 system
at T � 1�5. The maximum is at zero frequency, as for an
overdamped mode x

21
D �q, v� ~ j22 1q2 2 iv�v0. The

characteristic frequency, given by the half width at half
maximum, is vc � v0�j2 with v0 a microscopic relaxa-
tion rate. There is a marked narrowing of the width in
frequency as temperature decreases. One enters the RC
regime when vc 	 1�4 	 TX , a temperature larger than
Tc�,0.1�. At T � 1�5, the correlation length is becoming
comparable with the system size since the 6 3 6 system
gives a result that differs from 8 3 8.

The effect of RC collective fluctuations on single-
particle quantities is illustrated in Figs. 3(a) to 3(c)
that show density plots of the single-particle spectral
weight A�k,v� for an 8 3 8 system at, respectively,
T � 1�3, 1�4, and 1�5. When temperature reaches
T � 1�4 one notices that a minimum ( pseudogap) around
k � �0, p�, v � 0 develops along with two maxima
away from v � 0. The latter maxima are precursors of
the Bogoliubov quasiparticles of the ordered state [9,30].
The pseudogap becomes deeper and deeper as temperature
decreases, the distance between maxima remaining about
constant, as observed in high temperature superconductors
[2]. The condition for the appearance of a pseudogap in
A�k,v� is not only that we should be in the RC regime
and in low dimension but also that j�jth should be large
[8,9]. This illustrated by the fact that the pseudogap at
k � �p�2, p�2�, where the Fermi velocity is larger, is not

0 .00 0 .50 1 .00 1 .50 2 .00
ω

T =1/3

T =1 /4

T =1 /5

(χ"(ω)
   ω )

e
∆

FIG. 2. Even part of the pair spectral weight x
00
D�v��v

obtained from analytic continuation of imaginary time Monte
Carlo data for U � 24, Dt � 1�10, �n� � 0.95, and size
8 3 8, except for symbols that are for 6 3 6 at T � 1�5.
About 105 sweeps were done in each case.
4130
opened yet at T � 1�4 despite the fact that at T � 1�5 the
pseudogap is of comparable size both around k � �0, p�
and at k � �p�2, p�2�, in concordance with the equality
of the gaps at these two points in the zero-temperature
spin-density wave state. From the slopes in Figs. 3(a)
to 3(c), yF is clearly larger at �p�2, p�2� meaning that
the condition j . jth � yF�T is harder to satisfy at
this wave vector. Numerical estimates show that j is
nearly isotropic, by contrast with yF . These estimates
are consistent with the appearance of the pseudogap in
A�k,v� when j � jth.

As in any numerical simulation, finite-size effects
should be considered carefully. There are two important
intrinsic lengths in this problem, namely, jth and j.
When L ø jth, the system acts as if it was basically
in the quantum zero-temperature limit of a finite system.
We have checked that, at T � 1�8, A�k, v� shows real
gaps, instead of pseudogaps, that appear at progressively
higher temperature in systems of smaller size. For T �
1�3, 1�4, on the other hand, estimates of jth and of j as
well as calculations for 6 3 6 systems and a few 10 3 10
systems suggest that our numerical results for A�k,v�
on 8 3 8 systems are free of appreciable size effects,
i.e., L . j, jth. This can also be checked by the size
dependence of the results in Figs. 1(a) and 2. While size
effects become important in x

00
D�v��v when j exceeds L,

as long as jth , L it is possible to see thermally induced
pseudogap effects in A�k, v� even if j . L [8].
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FIG. 3. Density plot of the single-particle spectral weight
A�k, v� from about 105 Monte Carlo sweeps for U � 24,
Dt � 1�10, �n� � 0.95, and size 8 3 8. Top to bottom,
T � 1�3, 1�4, 1�5. The dilation by

p
�2� of the axis from

�p, p� to �0, 0� allows a comparison of Fermi velocities.
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n = 1 n = 0

SO(2)

KT

Pseudogap

T

SO(3)

FIG. 4. Schematic crossover diagram for the d � 2 attractive
Hubbard model in the weak-coupling regime. The shaded area
above the KT phase, up to the dotted line, is the RC pseudogap
regime. The KT critical regime is hatched.

In summary, the qualitative phase diagram for the
attractive Hubbard model in d � 2 sketched in Fig. 4
shows that near a point with high order parameter sym-
metry the transition temperature decreases, while the
pseudogap temperature increases along with the mean-
field transition temperature and the zero-temperature gap.
In the region where dTc�dn , 0, the crossover to KT
critical behavior occurs in the RC pseudogap regime when
T is less than the symmetry breaking field. In our sim-
ulations we would need a larger system size to reach the
KT critical regime. Contrary to the scenario of Ref. [7],
in our case, dimension and symmetry contribute to cre-
ate a wide pseudogap region, there is no critical coupling
strength, and furthermore one enters the RC regime with-
out sharp resonance in x

00
D�v��v. Also, the precursors of

Bogoliubov quasiparticles in A�k, v� occur under condi-
tions very different from those for strong-coupling Cooper
pairs that are local and do not need low dimension or
large j�jth. Comparisons with nonperturbative many-
body calculations should appear elsewhere [30].

In high Tc superconductors the competition is between
antiferromagnetism and superconductivity. Recent time-
domain transmission spectroscopy experiments [31] sug-
gest that the RC regime for the KT transition (hatched
region in Fig. 4) has been observed. Close enough to the
transition there is dimensional crossover to d � 3. For
antiferromagnetic fluctuations, there are suggestions from
NMR of a RC regime [32], but there is no definite proof.
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