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Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors
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We consider the temperature dependence of the sound attenuation and sound velocity in layered impure
metals due tos-wave superconducting fluctuations of the order parameter above the critical temperature. We
obtain the dependence on material properties of these fluctuation corrections in the hydrodynamic limit, where
the electron mean free path, is much smaller than the wavelength of sound and where the electron collision
rate t21 is much larger than the sound frequency. For longitudinal sound propagating perpendicular to the
layers, the open Fermi surface condition leads to a suppression of the divergent contributions to leading order,
in contrast with the case of paraconductivity. The leading temperature dependent corrections, given by the
Aslamazov-Larkin, Maki-Thompson and density-of-states terms, remain finite asT→Tc . Nevertheless, the
sensitivity of new ultrasonic experiments on layered organic conductors should make these fluctuations effects
measurable.

DOI: 10.1103/PhysRevB.69.224503 PACS number~s!: 74.25.Ld, 74.25.Fy, 74.40.1k
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The problem of fluctuations of the superconducting or
parameter above the critical temperature began to attrac
attention of researchers more than three decades ag1–3

Considerable work has been done from both the theore
and the experimental points of view. Conductivity, therm
conductivity, magnetoconductivity as well as tunneling pro
erties and nuclear magnetic resonance characteristics
amongst the various transport phenomena where fluctua
contributions were predicted and experimentally observ
Ref. 4 contains an extensive review of the field and re
ences.

In the present paper, we concentrate on the supercond
ing fluctuation corrections to the sound velocity and sou
attenuation in layered superconductors aboveTc . As usual,
superconducting fluctuations manifest themselves in th
different ways.4 ~a! The effective number of normal carrier
is reduced because some of the electrons exist as tran
Cooper pairs. This is the so-called density-of-states contr
tion. ~b! The single-particle excitations are Andreev reflec
off the superconducting fluctuations, as described by the
called Maki-Thompson term.~c! Some of the electrons be
have as Cooper pairs for a time given by the Ginzbu
Landau time. This is the famous Aslamazov-Lark
contribution. Layered organic superconductors, in particu
are an ideal class of materials to study fluctuat
phenomena. This is because the relatively low char
carrier concentration and the strong electronic anisotr
enhance the effect of superconducting fluctuations and
crease the size of the fluctuation regime. The manife
ation of superconducting fluctuations in organic materi
was found in a number of experimental works on dc m
netoconductivity, thermoconductivity, ac susceptibili
specific heat, and torque magnetometry.5 Prelim-
inary ultrasonic experiments in thek-phase lay-
ered organic materials6 (BEDT-TTF)2Cu@N(CN)2#Br,
(BEDT-TTF)2Cu@N(CN)2#Cl and (BEDT-TTF)2Cu(NCS)2
suggest that the sound attenuation coefficient is decrease
superconducting fluctuations over a sizeable tempera
range aboveTc . However, the effect is much weaker tha
0163-1829/2004/69~22!/224503~12!/$22.50 69 2245
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the fluctuation correction to the conductivity7 where, in the
same compounds, the Aslamazov-Larkin contribution do
nates the superconducting fluctuation effects. Althou
sound attenuation experiments seem to be a very promi
method to study fluctuation phenomena in layered superc
ductors, the theoretical description is still incomplete a
needs to be analyzed in more details. This more deta
analysis can tell us, for example, which material propert
control fluctuation phenomena. Fluctuation phenomena
then be used to access these properties when they are
independently known. For example, we will see that t
phase breaking time can be very important to determine
fluctuation contribution to ultrasonic attenuation whereas
would not contribute to dominant terms in the correspond
fluctuation conductivity. It is by considering a large set
experimental probes that one can make sure that all mat
properties are unambiguously determined.

In this paper we assume, as usual for fluctuation corr
tions, that we are close enough toTc that the characteristic
pair frequency is less than temperature~in dimensionless
units!. This is the so-called renormalized-classical regim
We study the case where longitudinal sound propagates
pendicular to the layers. This is the most relevant case
study since it is most easily accessible experimentally.7 We
also consider the hydrodynamic limit where the electr
mean free path, is much smaller than the wavelength
sound and where the electron collision ratet21 is much
larger than the sound frequency. In quasi-two-dimensio
systems, the Fermi surface is opened in the direction perp
dicular to the layers. The coupling to the sound comes fr
the modulation of the hopping integral across the layers, t
ing also into account the electroneutrality condition in t
moving frame.8 The Fröhlich model where phonons coupl
to the electronic density is not valid. The most dramatic co
sequence of the open Fermi surface in such a situation is
suppression of the divergence in the Aslamazov-Larkin a
Maki-Thompson terms that often give, by contrast, the m
important contribution to the fluctuation correction to th
electrical conductivity. Hence, sound propagation is le
©2004 The American Physical Society03-1



th
or
s

d
lc
fo
di
ic
.

b
by
,
c

tie
be
to
in
a
l a
tio
l-
re

re

b

tra
ta
s
,

io
l

in
t
a

s
he

he
he
ke
er
ng
c
it

ting

of a

e
le

n-
de

is
c-

um
m
or-
n-
a-
n-
ver
re-
ion.
ns.
to

pa-

not
va-

,
ac-

ro-
ho-
s

nte-

for
to
ec-
ons

g of
of
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strongly modified by superconducting fluctuations than
electrical conductivity. All the calculations are performed f
s-wave superconducting fluctuations. Thed-wave case need
a separate treatment.9,10

In the following section, we discuss earlier work an
present the Hamiltonian. The diagrams that enter the ca
lation and then details of the calculation appear in the
lowing sections. The results are gathered in Sec. V and
cussed in Sec. VI. The appendix contains mathemat
details on the analytic continuation of digamma functions

I. THE MODEL AND DEFINITIONS

Ultrasonic attenuation in impure metals was analyzed
Pippard,11 using the Boltzmann equation method, and
Tsuneto12 with the density-matrix formalism. Later on
Schmid,13 using Green function methods, derived the effe
tive electron-phonon interaction in the presence of impuri
taking into account the screening of Coulomb repulsion
tween electrons. A key point of the approach of Tsune
Pippard, and Schmid was to consider the electron system
reference frame moving together with the ion lattice. In
impure metal, the elastic scattering of electrons as wel
perfect screening at small phonon momentum and relaxa
to equilibrium occur in this oscillating frame. In this forma
ism, the electron-phonon coupling appears through the st
tensor instead of through the density operator occurring
the Fröhlich model. The latter model leads to erroneous
sults in the dirty limit.13

The idea of a moving reference frame was also used
Kotliar and Ramakrishnan,14 who considered the limit of
strongly disordered metal and analyzed the effect on ul
sound propagation of incipient localization near the me
insulator transition. Reizer15 considered the effect of variou
types of inelastic scattering~including electron-electron
electron-magnon scattering and weak-localization effects! on
sound attenuation.

The fluctuation corrections to the ultrasound attenuat
in 3D metals were estimated in the most singular channe
the early work of Aslamazov and Larkin.1 Aslamazov and
Varlamov, back in 1979, found the fluctuation corrections
layered superconductors.16 However, these papers did no
consider explicitly the form of the density of states for
corrugated cylindrical Fermi surface. That density of state
energy independent contrary to the assumption made in t
papers. In addition, the calculation was done for the Fro¨hlich
model. Also, Ref. 16 used impurity vertex corrections for t
external vertices in the correlators and we shall see that t
are unnecessary in the hydrodynamic limit when one ta
into account the fact that the calculation of impurity scatt
ing should be done in the electrically neutral movi
frame.13,14 For the case of interest, with open Fermi surfa
in the perpendicular direction, we find results that are qu
different from these earlier works.

We use the unperturbed quasiparticle energy spectrum

j~puu ,pz!5
puu

22pF
2

2m
12t'cos~pza!, ~1!
22450
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appropriate for layered metals. Here,pz is the component of
the quasiparticle momentum perpendicular to the conduc
planes,puu is the in-plane momentum,t'!«F is the small
interlayer hopping energy, anda is the interlayer distance. In
this model, the Fermi surface has the well-known shape
corrugated cylinder, and the density of states is given byn0
5m/(2pa). It is important to note that in this model th
density of statesn0 does not depend on the quasipartic
energy. In other words, the derivative (]n0 /]j)[0 vanishes.
This relation is obviously true att'50, i.e. for noninteract-
ing two-dimensional layers. If there is a small interlayer i
teractiont'Þ0, any cross section of the Fermi surface ma
at any value ofpz still gives the two-dimensional~2D! result
with (]n0 /]j)[0. One can easily see that this relation
valid for any Fermi surface that is opened in the third dire
tion (t'!«F) and has circular cross section in the plane.

As shown by Tsuneto12 and Schmid,13 based on earlier
work of Pippard11 and Blount,17 the canonical transformation
that takes us to the moving frame leads, in the continu
limit, to an electron-phonon interaction that originates fro
the commutator of the infinitesimal generator of the transf
mation with the kinetic-energy operator. The remaining co
tributions from the commutator of the generator of the c
nonical transformation with the electron-ion and electro
electron interactions are overall negligible. Since a trace o
fermions is performed to compute phonon damping, the
sult should be independent of the canonical transformat
The moving frame is the one best suited for approximatio

For a tight-binding model, such as the one we need
consider to obtain the proper open Fermi surface for pro
gation in the perpendicular directionpz , Eq. ~1!, the corre-
sponding microscopic derivation of the stress tensor has
been performed yet. It is not our purpose to give this deri
tion here. Instead, we follow the footsteps of Barisˇić,18 Su,
Schrieffer, and Heeger,19 and, more recently, Walker, Smith
and Samokhin8 and assume that the electron-phonon inter
tion comes from the modulation of the hopping parametert'
induced by the lattice deformation. Neglecting umklapp p
cesses, one obtains for the interaction of a longitudinal p
non propagating in thez direction perpendicular to the plane

He2ph52A2iG(
k,p

S \v0~k!

NMvs
2 D 1/2

~ k̂• ẑ!~ ê• ẑ!

3~cospza!cp1k,s
† cp,s~a2k

† 1ak!, ~2!

wherev0(k)5vsk is the sound frequency,vs the sound ve-
locity, M the ion mass,N the number of unit cells,G a
constant that depends on the derivative of the hopping i
gral t' with respect to the strain, whileak

(†) ,cp,s
(†) are, respec-

tively, destruction and creation operators for phonons and
electrons of spins. The above expression is restricted
longitudinal phonons propagating in the perpendicular dir
tion, hence the wave vector and polarization of the phon
involved in the interaction will satisfyk̂• ẑ5ê• ẑ51. The
above expression neglects the compression and stretchin
chemical bonds that are not strictly along the direction
propagation.
3-2
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II. SOUND ATTENUATION WITHOUT FLUCTUATION
CORRECTION

The sound attenuation coefficient is determined by
imaginary partg(k) of the complex frequencyv(k) where
the pole of the phonon Green functionD(k,v) is located.
This quantity obeys Dyson’s equation20

D21~k,vn!5@D0~k,vn!#212P~k,vn!. ~3!

Expressed in bosonic Matsubara frequenciesvn52pnT us-
ing units kB51 \51, with n an integer, the quantity
D0(k,vn)

D0~k,vn!52
v0

2~k!

vn
21v0

2~k!
~4!

is the phonon propagator in the noninteracting case
P(k,vn) is the phonon self-energy. In an impure metal, t
diagrammatic representation ofP(k,vn) is given by Fig. 1.
In the theory of electronic conductivity, one would conside
similar diagram for the current-current correlator with t
bold dots representing the components of the vector velo
eva5e(]j/]pa), wherej is the electronic energy andpa
thea component of momentum. In the case of sound atte
ation, the vertex comes instead from the stress tensor co
sponding to the electron-phonon interaction Eq.~2!. Using
Eqs.~2! and~4!, one obtains for this vertexgcos(pza) where
g is a constant.

Each solid line in Fig. 1 corresponds to the electron Gre
function which, at finite temperature in the presence of i
purities, is given by

G~p,«n!5
1

i «̃n2j~p!
, ~5!

wherej(p) is the quasiparticle energy and where we defin
«̃n5«n11/(2t)sgn(«n) with «n5pT(2n11) the Matsub-
ara frequency andt the elastic scattering time. The quanti
i /(2t)sgn(«n) is the imaginary part of the quasiparticle se
energy. The real part of the self-energy is constant an
absorbed in the definition of the chemical potential.

In principle, one should include the vertex corrections t
are represented, to leading order in (pF,)21 with , the elec-
tron mean free path, by the nonintersecting dashed impu

FIG. 1. The phonon self-energy in the case of an impure me
Solid lines are one-electron Green functions, dotted lines the
phonon propagators, dashed lines with crosses correspond t
impurity scattering, and bold circles show the renormaliz
electron-phonon vertices.
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lines, as shown in Fig. 1. In the case of the current-curr
correlator, vertex corrections lead to the replacement of
scattering timet by its transport analogt tr .20 For s-wave
scattering, vertex corrections vanish because the vector
tex eva averages to zero upon angular integration at van
ing external momentumk. This argument generally does no
work with the correlator of the stress tensor. However, tak
into account perfect screening, it was shown by Schmid13 in
the continuum limit that there is no impurity diffusion en
hancement of the electron-phonon vertex in the case of tr
verse phonons, and that for longitudinal phonons this eff
is negligible in the hydrodynamic limitk,!1 andvt!1.
Physically, this comes about from the fact that the calculat
should be done in the moving frame and that screening
perfect at long wavelengths. In our case, the analogous a
ment of electroneutrality leads8 to the replacement of the
stress vertexF by F2^F&, where the average accounts f
the chemical potential shift.21 That average is precisely wha
is needed to make the impurity vertex correction vanish.
addition, in our specific case,^F&5^g cos(pza)&50 to the
order in phonon wave vectork that we need.

The phonon self-energy without fluctuation correcti
may finally be obtained from

P~k,vn!52g2T(
«n

E d3p

~2p!3
cos2~pza!G~«n ,p!

3G~«n1vn ,p1k!. ~6!

To evaluate this integral whent is finite, it is easiest to make
the change of variablesj5(puu

22pF
2)/2m12t'cos(pza):

E d3p

~2p!3
5

m

~2p!3E2`

`

djE
0

2p

duE
2p/a

p/a

dpz ~7!

and to evaluate the integral overj first, being careful to add
and subtract the clean limit result to insure convergence.
ter summation over«n one should make the analytic continu
ation of the external phonon frequency following the ru
ivn→v1 id. For sound, it is justified to work in the hydro
dynamic limitvt!1 even for very pure systems. The qua
tity kvFt5k, also appears in the loop integral. Since t
Fermi velocity is usually much larger than the sound velo
ity, kvF@v5vsk, the limit k,.1 may often be reached in
ultrasonic experiments11 even though we always havevt
!1. Hence, expansion of the result in powers ofk, may not
be justified. In our case, however, since we are conside
sound propagation perpendicular to the layers,vF is reduced
by the anisotropy ratiot' /t uu , which can be as small a
1024, so that it is justified in our case to consider the lim
k,!1. One can thus expand in powers ofvt andk,. The
terms with odd powers ofv give corrections to the soun
attenuation while the terms proportional to even powers ov
contribute to the sound velocity. The first corrections th
involve k appear to order (vt)(k,)2 because of thepz inte-
gral. In all that follows then, we setk50 and expand in
powers of (vt).

From Im@PR(v)#52g2n0vt one can obtain the contri
bution to the imaginary part of the phonon frequency20

l.
re
the
3-3
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g~v!5 1
2 v0~k! Im@PR~v!#, ~8!

where is located the pole of Dyson’s equation~3!. We as-
sume that the real part of the frequency at which the pol
located,v, is close to the unperturbed frequency so th
v0(k);v0(k)2/v(k). The power attenuation then reads

a~v!522g~v!/vs , ~9!

where vs is the sound velocity. The sound attenuation
creases witht, as does conductivity.

The renormalization of the phonon frequencyv(k) is ob-
tained from the real part of phonon self-ener
Re@PR(v,k)#52g2n0@12(vt)2# using

v~k!5v0~k!A11RePR. ~10!

III. DIAGRAMS FOR FLUCTUATION CONTRIBUTION
TO SOUND ATTENUATION

The preceding discussion shows that one can conside
same set of diagrams, illustrated in Fig. 2, as for
conductivity,4,22 substitutingg cos(pza) for the vector verti-
ceseva at the extreme left and right-hand sides. Here, e
wavy line in the figure corresponds to the fluctuation pro
gator ~Cooper ladder! L(q,Vk) which, asT→Tc , has the
form

L~q,Vk!52H n0F e1cS 1

2
1

uVku
4pTD2cS 1

2D
2

^~Dj~q,p! upu5pF
!2&F.S.

~4pT!2
c9S 1

2
1

uVku
4pTD G J 21

,

~11!

FIG. 2. Feynman diagrams giving the leading-order correcti
from the fluctuations to the sound attenuation. Diagram 1 is of
Aslamazov-Larkin~AL ! type, diagrams 2-4 are of Maki-Thompso
~MT! type, and the diagrams 5-10 are of the density-of-sta
~DOS! type. Solid lines are the normal state Green functions, w
lines the fluctuation propagators, shaded semicircles and sh
rectangles the impurity ladder averagings, dashed lines with c
the single impurity scatterings, and bold circles the renormali
electron-phonon vertices. Adapted from Ref. 4.
22450
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wheree'(T2Tc)/Tc , andc(z) is the digamma function. In
the above Eq.~11!, the angular average over the Fermi su
face with the spectrum in Eq.~1! reads

^~Dj~q,p! upu5pF
!2&F.S.5

1
2 $~vFquu!

21@4t'sin~qza/2!#2%

[t21D̂q2, ~12!

whereD̂ is a generalized diffusion operator.
Returning to Fig. 2, the shaded semicircles correspon

vertex corrections from impurity averaging and are given

l~q,«1 ,«2!5
u«̃12 «̃2u

u«12«2u1
D̂q2

t2u«̃12 «̃2u2
Q~2«1«2!

. ~13!

Diagrams 3, 4, 9, and 10 of Fig. 2 contain the impur
ladder in the particle-particle channel~shaded rectangle!:

Gc~q;«1 ,«2!5
1

2ptn0
F12

Q~2«1«2!

u«12«2ut S 12
D̂q2

t~«12«2!2D G ,

~14!

while diagrams 7 and 8 have a single impurity line, whi
corresponds to the factor 1/(2ptn0). One can see that al
other insertions of impurity lines either lead to diagrams t
vanish, or give negligible corrections.

IV. CALCULATIONAL DETAILS FOR THE DIAGRAMS

A. MT and DOS diagrams

We illustrate the procedure to evaluate the diagrams
Fig. 2 by finding the expression for diagram 2~Maki-
Thompson type!. In analytical form it is given by the integra

P (MT)~vn ,k!52g2T(
Vk

E d3q

~2p!3
L~q,Vk!K~q,Vk ,vn!,

~15!

where

K~q,Vk ,vn!

5T(
«n

l~q,«n ,Vk2«n!l~q,«n1vn ,Vk2«n2vn!

3E d3p

~2p!3
cos~pza!cos@~qz2pz!a#G~p,«n!

3G~p1k,«n1vn!G~q2p,Vk2«n!

3G~q2p2k,Vk2«n2vn!. ~16!

For simplicity, and as in experiment,6 we assume that the
sound propagates in the direction perpendicular to the c
ducting layers, so thatk has only one component:k
5(0,kz). The most singular contribution from the fluctuatio
propagatorL(q,Vk) comes fromq→0. Therefore, one can
neglect theq dependence in the electron Green functions.
also set4 Vk50 since superconducting fluctuations are im
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portant in the renormalized-classical regime where the c
acteristic frequency for the pair propagator is less than t
perature.

Performing the integration overp in Eq. ~16! first, one has
for K(q,vn)[K(q,0,vn):

K~q,vn!5m cos~qza!T(
«n

1

~2u«n1vnu1D̂q2!

3
1

~2u«nu1D̂q2!

1

u«n1vn
˜ u1u«̃nu

, ~17!

that is then divided into two parts, namely, the first part h
the summation in the interval«nP(2`,2vn)ø@0,̀ ),
while in the second one the summation is done in the inte
«nP@2vn,0),

K~q,vn!52T(
n50

`
1

~2«n1vn1D̂q2!

1

~2«n1D̂q2!

3
1

2«n1vn1t21

1
T

vn1t21 (
n52n

21
1

~2«n12vn1D̂q2!

3
1

~22«n1D̂q2!
. ~18!

Each of these two contributions leads to a different te
perature dependence. The limits of summation in the sec
part of Eq.~18! can be obtained by taking into account t
fact that frequencies«n5pT(2n11) are of the fermionic
type while the sound frequencyvn52pTn is bosonic. The
summation over«n in the second part of Eq.~18! results in

2
m cos~qza!

4p~11vnt!

cS 1

2
1

D̂q2

4pT
D 2cS 1

2
1

D̂q212vn

4pT
D

~D̂q21vn!
.

~19!

The analytical continuation of this sum involves som
subtleties that are discussed in the Appendix.

One can see that asT→Tc , the mainq dependence in Eq
~15! comes from the fluctuation propagatorL(q) and from
the poles ofK(q,vn). Therefore, it generally suffices to ex
pand the regular part ofK(q,vn) in powers ofq and to keep
the very first nonvanishing terms of the expansion.

The singular part of Eq.~19! comes from taking the
q0-term of the numerator together with the diffusion po
1/(D̂q21vn) and analytically continuing them to real pho
non frequencies. One arrives at integrals of the type

E d3q

~2p!3

cos~qza!

~D̂q211/tf!~e1hquu
21r sin2~qza/2!!

,

~20!
22450
r-
-

s

al
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wherer 516t'
2 h/vF

2!1 is the anisotropy parameter,23 andtf

is the phase-breaking time, which provides the converge
of the integrals over the pair momentumq at small wave
vectorq.3 The coefficienth has the meaning of the square
the effective coherence lengthj in the isotropic 2D case4

h[j2~Tt!52
~tvF!2

2 FcS 1

2
1

1

4pxD2cS 1

2D
2

1

4px
c8S 1

2D GU
x5Tt

. ~21!

At T5Tc , the anisotropy parameter can be written asr
54j'

2 (0)/a2 where j'(0) is the Cooper pair size in th
perpendicular~z! direction. We will also use the phase
breaking parametergf52h/(vF

2ttf) instead oftf .
The integral in Eq.~20! results in the so-called anomalou

MT contribution. Note, however, that while the leading ter
in the expansion of the numerator of Eq.~19! gave the above
result, Eq.~20!, the q2-term of the expansion cancels th
diffusion pole. This ‘‘regular anomalous’’ term, whose an
log was overlooked in early work on conductivity fluctuatio
corrections,24 results in the same type of integral as th
given by the first part of Eq.~18! with q50:

E d3q

~2p!3

cos~qza!

e1hquu
21r sin2~qza/2!

. ~22!

Together, these two terms give so-called regular MT con
bution, which generally has weaker temperature depende
than the anomalous MT part.

The evaluation of the diagrams 5–8 of Fig. 2 results
integrals of the type

E d3q

~2p!3

1

e1hquu
21r sin2~qza/2!

, ~23!

which give the density of states part of the fluctuation c
rections.

The remainingq integration in Eqs.~20!, ~22!, and~23! is
similar to that encountered for the conductivity calculatio
and is described in much details in the review4 and in Ref.
22. We should emphasize that asT→Tc , the main tempera-
ture dependence of the fluctuation diagrams comes f
these integrals. The remaining ‘‘bubble,’’ which consists
Green functions and impurity lines, has a weaker depende
on Tt. It provides the coefficient in front of the functio
of e.

In the conductivity calculation, one can drop the diagra
containing the impurity ladder~3, 4, 9, and 10 of Fig. 2!.
This is because they contain the integration of one vec
vertex with the Green function triangle. Angular integratio
over p leaves only terms containing powers of the sm
factor (vFkt). In the general case of sound attenuation a
propagation these diagrams would contribute, but for so
propagating perpendicular to the layers the integration o
the open Fermi surface of the vertexg cos(pza) also leads to
a vanishing contribution for diagrams 3, 4, 9, and 10 of F
2 to leading order ink,.
3-5
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The smallv expansions of the DOS diagrams 5, 6, and
the regular contributions to the MT diagram 2 each lead
zeroth-order terms, the combination of which does not s
to zero. One notices the difference with the conductivity c
culation, where such a cancellation of zeroth-order terms
sures that there is no anomalous diamagnetism aboveTc .
The DOS diagrams 7, 8, and the anomalous part of the
diagram 2 do not have zeroth-order terms that would cont
ute to the leading renormalization of the sound velocity.

B. Aslamazov-Larkin diagram

Finally, let us consider the Aslamazov-Larkin~AL ! dia-
gram 1, which gives the main fluctuation correction to m
of the transport phenomena. In the case of sound propaga
perpendicular to the layers, the analytical expression for
AL diagram reads

P (AL)~vn ,k!522g2T(
Vk

E d3q

~2p!3
B2~q,Vk ,vn!

3L~q,Vk!L~q,Vk1vn!, ~24!

where

B~q,Vk ,vn!5T(
«n

l~q,«n1vn ,2«n!l~q,«n ,2«n!

3E d3p

~2p!3
cos~pza!G~p,«n!G~p,«n1vn!

3G~q2p,2«n!, ~25!

In Eq. ~25!, we have neglected theVk dependence of the
electron Green functions. One can also setvn50 and ex-
pand G(q2p,2«n) in Eq. ~25!.22 For sound propagating
perpendicular to the planes, we can user !1 @See Eq.~42!#
to find the appropriate expansion parameter forG(q2p,
2«n) appearing in the integral, namely,

j~q2p!2j~p!

max$pT,1/t%
5

2t'$cos@~qz2pz!a#2cos~pza!%

max$pT,1/t%
.

After the angular integration in Eq.~25!, the leading nonva-
nishing term reads

B~q!52
4t'hn0@12cos~qza!#

vF
2

. ~26!

Following the Ref. 22, one can integrate Eq.~24!, which
after the analytic continuation and expansion in powers ofv,
results in the integral of the type

E d3q

~2p!3

sin4~qza/2!

@e1hquu
21r sin2~qza/2!#n12

~27!

in the nth order ofv expansion. To leading orders inv, the
integrals in Eq.~27! are not divergent ate→0. The resulting
AL terms are finite and comparable with other fluctuati
contributions.
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V. RESULTS

In this section we collect the results for, in turn, the flu
tuation corrections to the sound attenuation and then to
sound velocity.

A. Sound attenuation

The odd powers of thev expansion of the analytically
continued results for the diagrams of Fig. 2 give the fluctu
tion corrections to the imaginary part Im@PR(v)# of the re-
tarded phonon self-energy. One can then use this resu
obtain the sound attenuation from the imaginary part of
pole of the propagator, as in Eqs.~8! and ~9!.

All diagrams contribute to the polarization propagator
leading order inv. The different contributions to the soun
attenuation coefficient are then extracted from the imagin
part of the retarded fluctuation polarization operator. In
most general form, they can be written as

a (b)~T,v!5
g2v2n0

«Fvs
katt

(b)~Tt! f (b)~e,r ,gf!, ~28!

whereb denotes the particular channel~DOS, rMT, aMT or
AL !. In Eq. ~28!, f (b)(e,r ,gf) means the function of tem
perature which comes from the integrals in Eqs.~20!, ~22!,
~23!, and~27!, and which also depends on the material pro
erties. The coefficientkatt

(b)(Tt) comes from the integration
of Green functions and impurity blocks in the expression
the type ~16!. It has weaker temperature dependence ae
→0 than f (b)(e,r ,gf), and it basically shows how the im
purity concentration affects the result.

In the following, it will be more convenient to use th
dimensionless parameterh̃(Tt)5h/(tvF)2. We list here the
functions f (b), which also appear in the conductivit
calculation,22 and the coefficientskatt

(b) . For the reader’s con-
venience, we also give the limiting expressions off (b) which
depend on the relation betweene, r, andgf , where appli-
cable.

DOS:

f (DOS)~e,r !5 lnS 2

Ae1Ae1r
D '2

1

2 H ln r , e!r

ln e, r !e.
~29!

katt
(DOS)~x!5

c9S 1

2D22pxc8S 1

2
1

1

4pxD
8p2xh̃~x!

'5 2
28z~3!

p3
, x!1

2
4p3x2

7z~3!
, x@1.

~30!

Regular part of MT:
3-6
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f (rMT)~e,r !5
~Ae2Ae1r !2

r
'H 1, e!r

r

4e
, r !e.

~31!

katt
(rMT)~x!52

p3x22pxc8S 1

2
1

1

4pxD1c9S 1

2D
16p2xh̃~x!

'H 14z~3!

p3
, x!1

2x, x@1.

~32!

Anomalous part of MT:

f (aMT)~e,r ,gf!5
1

r S 211
e1r 1gf

Agf~gf1r !1Ae~e1r !
D

'

¦

1

Argf

, e!gf!r

1

Ar e
, gf!e!r

1

2e
, gf!r !e

1

2gf
, e!r !gf

r

8gfe
, r !min$gf ,e%.

~33!

katt
(aMT)52

p

4
. ~34!

AL:

f (AL,a)~e,r !5
1

r F12A e

e1r S 11
r

2~e1r ! D G

'5
1

r
, e!r

3r

8e2
, r !e.

~35!

katt
(AL)5

p

8
. ~36!

The fluctuation terms scale likev2 just as in the corre-
sponding normal metal case without fluctuation correctio
22450
B. Sound velocity

The renormalization of the phonon frequencyv(k) ob-
tained from Eq.~10! provides the fluctuation corrections t
the sound velocity when we usev(k)5vsk. It should be
emphasized that there is no anomalous MT term in lead
~zeroth! order ofv, while to higher order ofv all types of
temperature dependencies appear. To leading orderv0 the
nonzero terms give, forDv/v5(v2v0)/v0, the expres-
sions in a form

Dv (b)~T,v!

v
5

Dvs
(b)~T,v!

vs
5

g2Tn0

«F
kv

(b) f (b)~e,r ,gf!.

~37!

For DOS, rMT, and aMT terms, the temperature functio
f (b)(e,r ,gf) are given by Eqs.~29!, ~31!, and~33!, respec-
tively. The temperature functionf (AL,v)(e,r ) for the AL dia-
gram is given by the Eq.~41!, which is different from that for
attenuation~35!. We then obtain for the coefficientskv

(b) :
DOS:

kv
(DOS)51, ~38!

Regular part of MT:

kv
(rMT)52 1

2 , ~39!

Anomalous part of MT:

kv
(aMT)50, ~40!

AL:

kv
(AL) f (AL,v)~e,r !52F11

2e

r S 211A e

e1r D G
'2H 1, e!r

3r

4e
, r !e.

~41!

VI. DISCUSSION

Comparison of the normal state results without fluctuat
corrections found in Sec. II with Eqs.~28! and ~37! above
show that the fluctuation corrections are smaller than
normal state contribution by a factor ofT/«F . For layered
organics, the Fermi surface parameters of Ref. 25 lead
T/«F;1022. The temperature functionsf (b) increase this
ratio at T→Tc , thus making the fluctuation corrections e
perimentally measurable.

It can be seen from the results of preceding section th
is the k (b)(Tt) coefficients that determine the sign of th
fluctuation sound attenuation and sound velocity. The coe
cients for sound attenuationkatt

(b)(Tt) in Eq. ~28! have
weaker temperature dependence than that of the funct
f b. One can see that these coefficients in all fluctuation d
grams are finite as (Tt)→0, and that they are of the sam
order of magnitude in this limit. In the opposite~clean! limit
(Tt)@1, these coefficients increase as a power law of (Tt).
3-7
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We recall that there is an analogous formal divergence of
DOS and MT coefficients22 in the fluctuation conductivity
but in that case they cancel each other in the limit (Tt)
@1. In our case, the formal extension of our results to
limit (Tt)@1/Ae would be incorrect because the local a
proximation for the fluctuation propagator~11! and the im-
purity vertex ~13! have a natural limit of validity (Tt)
!1/Ae ~the so-called local clean case!.26

In contrast to the coefficients for sound attenuat
katt

(b)(Tt), the coefficients in the case of sound velocity,kv
(b)

in Eq. ~37!, do not depend on Tt, thus simplifying the esti-
mation of the sound velocity corrections in particular ma
rials.

The overall magnitude of the fluctuation correction
given mainly by the temperature functionsf (b). These func-
tions depend on the anisotropy parameterr and the phase
breaking timetf , which are defined by the intrinsic materi
properties. The temperature function corresponding to
given type of diagram is identical for sound attenuation a
velocity, except for the AL contribution which has temper
ture dependencies that differ. In general, all the fluctuat
terms remain finite asT→Tc . The asymptotics of the corre
sponding temperature functions have been given in the
ceding section and they were also discussed elsewhere.22

The functionsf (b) also describe the crossover betwe
two and three dimensions, where by three-dimensions
mean that the superconducting correlation length is m
larger than the interlayer spacing. The two-dimensional
havior corresponds to«@r and the three-dimensional beha
ior to the opposite limitr @«. The crossover occurs at«
;r , namely, when the superconducting correlation len
j'(0)u«u21/2 in the perpendicular direction becomes of t
order of the interplane spacing.

In order to compare the contributions from different d
grams, we consider a range of parameters which is real
for layered organic superconductors~see Figs. 3–6!. The es-
timation for the anisotropyt uu /t''4000, wheret uu is the in-
tralayer transfer integral, is in agreement with the magneto
sistance data fork-(ET)2Cu(NCS)2.27 This gives an
anisotropy parameter of the order ofr *1024.

Concerning the scattering time, its estimate28 from
Shubnikov-de Haas experiments ink-(ET)2 materials gives

FIG. 3. The temperature dependence off (DOS) at various values
of anisotropy parameterr 51021–1024.
22450
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t'3 ps, which leads to Tt;1 at T>Tc .
The phase-breaking timetf can be estimated from th

experimental data on fluctuation contribution to transport
efficients using the appropriate expression for the MT d
gram. The analysis of the magnetoresistance data on YB
in Ref. 29 resulted in valuestf;1/T. Later on, the authors
of Ref. 22 claimed that neglecting the orbital pair breaki
effects while leaving the Zeeman contribution to the M
diagram in Ref. 29 can be incorrect. Hence, they exten

FIG. 4. The temperature dependence off (rMT) at various values
of anisotropy parameterr 51021–1024.

FIG. 5. The temperature dependence off (aMT) ~a! at fixed real-
istic gf50.1 and at various values of anisotropy parameter
51021–1024, ~b! at most realistic for thek-(ET)2 family com-
poundsr 51024 and at variousgf51021–1026.
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the range of the realistic values oftf to tf&10/T with tf
;100/T being still acceptable for the analysis.22 A similar
estimate was chosen by the authors of Ref. 10 to predict
magnitude of the fluctuation corrections to the nuclear sp
lattice relaxation rate and the NMR Knight shift in high-Tc
cuprates. To the best of our knowledge, no relevant anal
in layered organic materials have been reported to d
However, it is known that the phase-breaking time sho
satisfy the relationtf.t. Without loss of generality then
we assume that pair breaking by inelastic scattering is w
enough and we considergf;1023–1022.

The aMT contribution vanishes to leading orderv0 for
sound velocity. With the above estimation for the anisotro
parameter, one can see that the AL part as well as the reg
MT part give the least important nonvanishing contributio
to sound velocity~order v0). Indeed, lim«→0f (rMT)(«,r )
5 lim«→0f (AL,v)(«,r )51 at anyr, while for the DOS con-
tribution, lim«→0f (DOS)(«,r )5(1/2)ln(4/r )'5 at r;1024.

For sound attenuation the contribution of the AL ter
can be significant nearTc , by contrast to its contribution
to the sound velocity, since lim«→0f (AL,a)(«,r )51/r . How-
ever, it decays much faster than all other fluctuation ter
above Tc : f (AL,a)(e50.002)/f (AL,a)(e50.01).23 with
limr /«→0f (AL,a)(«);1/e2. At the same time, at gf
;1023–1022 and r;1024, we see that the anomalous M
temperature function is large,f (aMT)(e50)'500 at gf

FIG. 6. The temperature dependence of AL contributions~a! to
the sound attenuationf (AL,a), ~b! to the sound velocityf (AL,v), at
various values of anisotropy parameterr 51021–1024.
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;1023 and f (aMT)(e50)'50 at gf;1022. Thus, at some
gf , the aMT can be much larger than all other contributio
However, while it is quite large ate50, the aMT part de-
creases with increasingT faster than the DOS contribution
Indeed, at r 51024, the ratio f (DOS)(e50.002)/f (DOS)(e
50.01).1.3 shows that the DOS contribution has n
changed much in that temperature range while the co
sponding ratio for aMT is f (aMT)(e50.002)/f (aMT)(e
50.01).5 for the samer and in the relevant range ofgf . In
other words, the logarithmic asymptotics~29! of the DOS
diagram atr /e→0 wins over the power-law dependencies
the aMT term~33!.

One can see that next order terms in the frequency exp
sion for the sound velocity and sound attenuation would c
tain the factor (v/T)2n, wheren51,2, . . . . Thetypical ul-
trasound frequency is of the order ofv;100 MHz. At T
*Tc.10 K, the relevant frequency to temperature ratio
thus of the order (v/T)2;1027. One can check, for ex
ample, that in order to compensate for such a small fac
the parametergf in the anomalous MT term atr;1024

should be as small as 10210, corresponding to unreasonab
large tf;108t. We conclude that, in our model, the soun
velocity should be increased by the fluctuation correctio
given by the DOS term.

Finally we would like to comment on the applicability o
our model with regard to the character of interlayer elect
transport in organic conductors, a subject which is still ho
debated. The interlayer tunneling of electrons can be co
ent or incoherent~see Refs. 30,31 and references there!.
Following the terminology of Ref. 31, we should distinguis
between two limiting cases of incoherent interlayer transp
strongly and weakly incoherent. First, in the strongly inc
herent case the intralayer electron momentum is not c
served in the tunneling processes between adjacent la
because the tunneling can be accompanied by strong el
or inelastic processes. In this case the motion of electr
between the layers is diffusive and the electron band state
the z direction and the corresponding Fermi surface can
be defined. Our model is invalid in that limit. It is valid
however, in the second case, namely, for weakly incohe
tunneling, that occurs whentt'!1. In that case the intra
layer electron momentum is conserved in the tunneling p
cess and the electron wave function in adjacent layers
some overlap, but there are many in-plane collisions betw
tunneling events. Our approach is also valid obviously in
coherent case wherett'@1.

It is clear from our results that we can also consider t
other limiting cases, namely, the clean limit (Tt@1) and the
dirty limit (Tt!1). The latter always corresponds to weak
incoherent tunneling while both coherent and weakly inc
herent tunneling can occur in the former. This can be
plained as follows. We have assumed throughout thatr !1.
That parameter takes the following limiting forms:22

r 5
4j'

2 ~0!

a2
;5

t'
2 t

T
, Tt!1

t'
2

T2
, Tt@1,

~42!
3-9
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where atT5Tc , j'(0) is the size of the Cooper pair pe
pendicular to the plane. The conditionsr !1, and Tt!1,
corresponding to dirty case, are consistent only with
weakly incoherent tunneling since they lead to (tt')2!Tt
!1. On the other hand, for Tt@1 the conditionr !1 is
consistent with both coherent and weakly incoherent tun
ing. This explains why in the preceding discussion we d
tinguished only between the clean and dirty limits. Note t
the crossover from clean to dirty limit occurs atvF /T
;vFt, namely, when the elastic mean free path becom
smaller than the thermal de Broglie wavelength.

In summary, the superconducting fluctuation correctio
to the sound attenuation, in a realistic range of parame
are given by the sum of the DOS, anomalous MT and
terms, which decrease the normal state attenuation. In
trast, to leading order inv, the corrections to the soun
velocity are given by DOS diagrams, because the expan
for the anomalous MT diagram begins at orderv while the
AL diagram is small to this order.

VII. CONCLUSION

We calculated, in the hydrodynamic limitvt!1 andk,
!1, the effect of superconducting fluctuations on longitu
nal sound propagating perpendicular to the layers of qu
two-dimensional systems aboveTc . This corresponds to the
experimentally realizable situation. The detailed results
the sound attenuation coefficienta and the sound velocity
renormalizationDvs /vs are summarized in Sec. V. In shor
there are four types of temperature dependencies com
respectively, from~a! the density-of-states diagrams,~b! the
regular contribution of the Maki-Thompson diagram,~c! the
anomalous contribution of the Maki-Thompson diagram, a
~d! from AL diagram. These contributions have differe
signs and their magnitudes strongly depend on material p
erties such as anisotropy and phase-breaking processes
longitudinal sound propagating perpendicular to the laye
the open Fermi surface condition leads to a suppressio
the divergent contributions to leading order, so that fluct
tion corrections to sound attenuation are expected to ge
ally be much smaller than the fluctuation corrections to c
ductivity.

The leading temperature dependencies with respect tTc
of the fluctuation corrections to the sound attenuation h
the samev2 scaling with frequency as in the impure~dirty!
metal without fluctuation correction. To this order inv, all
four types of temperature contributions are present. As
move close toTc , the fluctuation contribution decreases t
sound attenuation below its normal state level, at least
realistic values of the material parameters.

The leading fluctuation correction to the sound veloc
does not depend onv, just like the normal state term. To th
order, there are only three types of temperature dependen
coming from the density-of-states diagram, AL diagram a
from the regular contribution of the Maki-Thompson di
gram. The overall fluctuation correction in realistic mater
situation should be dominated by the density-of-states c
tribution and should increase the sound velocity as we
proach Tc . The anomalous contribution of the Mak
22450
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Thompson diagram is proportional to (v/T)2 and generally
can be neglected unless phase breaking is extremely
Further details of our calculations may be found in Ref. 3

It should be noted that our results on sound attenua
are in qualitative agreement with the preliminary experime
tal data.7 These experiments are currently in progress. T
detailed analysis including the comparison with the pres
theory will be published elsewhere.

To make actual comparisons with experiment, one m
need to consider several other physical effects. For exam
strongly incoherent interplane tunneling31 and d-wave
superconductivity33 may have to be considered. In additio
one may need to include in the fluctuation propagator
~11! mode-coupling terms that will allow one to go beyon
mean-field theory in the description of the crossover fro
two to three dimensions.
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APPENDIX A: ON THE ANALYTICAL CONTINUATION
OF THE DIGAMMA FUNCTION OF COMPLEX

ARGUMENT

We shall discuss an important mathematical issue oc
ring in the evaluation of the anomalous MT contribution~18!
and its further analytic continuation, namely, let us look
the typical sum over the fermionic Matsubara frequencie

T(
n50

n21
1

«n
. ~A1!

The expression~A1! appears if one decomposes into part
fractions the initial sum over«n in the anomalous part of the
Maki-Thompson diagram and neglects the small ter
;D̂q2 in them. One can easily evaluate the sum~A1! using
the well-known representation of the digamma function

T(
n50

n21
1

«n
5

1

2p H cS 1

2
1n D12 ln 21gJ , ~A2!

where g50.577 216 is the Euler constant. Heren comes
from the external bosonic Matsubara frequencyvn

52pTn, with n an integer. At the same time, it is easy
3-10
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see that the straightforward change of variablen52n821
transforms the initial expression~A1! in a way that one ob-
tains the alternate result

T(
n50

n21
1

«n
[2T (

n852n

21
1

«n8
5

1

2p H cS 1

2
2n D12 ln 21gJ .

~A3!

As long as we deal with the Matsubara frequenciesvn

52pTn these two results Eq.~A2! and ~A3! are equivalent
because of the relation

cS 1

2
2zD5cS 1

2
1zD1p tan~pz!, ~A4!

and the fact that tan(pz)50 whenz5n is an integer. There-
fore, at this stage we are free to choose either Eq.~A2! or
~A3! as the result of the summation. The distinction appe
when one tries to do the analytic continuation to real f
quencies ivn→v1 ih. After analytic continuation, Eqs
~A2! and ~A3!, which we obtained from the same diagra
are not equal to each other anymore. Indeed, for noninte

n, c( 1
2 2z)5c( 1

2 1z) is not true anymore, as one can s
from Eq. ~A4!.
u-
n-

ru

v.
.

s

22450
rs
-

,
er

It is crucial to choose either Eq.~A2! or ~A3! as the result
of the summation before we do the analytic continuatio
The choice is determined by whether we want the advan
or the retarded response function. Indeed, consider Eqs.~A2!
and ~A3! as general response functionsxM(vn)

5x(z)uz5 ivn
}c( 1

2 6n) on the Matsubara frequency doma

vn . If we then analytically continue the argumentz5 ivn

→v1 ih of c@1/22 iz/(2pT)#, the poles of resulting func-
tion are all located below the real axis of the complex pla
thus giving us the retarded functionxR(v). On the other
hand, the analytic continuationz5 ivn→v2 ih of the argu-
ment of c@1/21 iz/(2pT)# gives us the advanced respon
because all its poles are located in the upper half-plane.

We thus conclude that if the digamma function appears
our calculations, we are free to use either Eqs.~A2! or ~A3!
because they are equivalent, as long as we deal with Mat
ara frequencies. However, before doing the analytic conti
ation, we have to decide whether we need the advance
the retarded function. If we want the retarded function,
use the rule given by Eq.~A2! and deal only with digamma
functions of the typec(1/21n). Otherwise, usec(1/22n)
to obtain the advanced response.
s
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