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Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors
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We consider the temperature dependence of the sound attenuation and sound velocity in layered impure
metals due tes-wave superconducting fluctuations of the order parameter above the critical temperature. We
obtain the dependence on material properties of these fluctuation corrections in the hydrodynamic limit, where
the electron mean free pathis much smaller than the wavelength of sound and where the electron collision
rate 7! is much larger than the sound frequency. For longitudinal sound propagating perpendicular to the
layers, the open Fermi surface condition leads to a suppression of the divergent contributions to leading order,
in contrast with the case of paraconductivity. The leading temperature dependent corrections, given by the
Aslamazov-Larkin, Maki-Thompson and density-of-states terms, remain finifle—a%.. Nevertheless, the
sensitivity of new ultrasonic experiments on layered organic conductors should make these fluctuations effects
measurable.
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The problem of fluctuations of the superconducting ordetthe fluctuation correction to the conductivitwhere, in the
parameter above the critical temperature began to attract ttsame compounds, the Aslamazov-Larkin contribution domi-
attention of researchers more than three decades-dgo. nates the superconducting fluctuation effects. Although
Considerable work has been done from both the theoreticalound attenuation experiments seem to be a very promising
and the experimental points of view. Conductivity, thermo-method to study fluctuation phenomena in layered supercon-
conductivity, magnetoconductivity as well as tunneling prop-ductors, the theoretical description is still incomplete and
erties and nuclear magnetic resonance characteristics aneeds to be analyzed in more details. This more detailed
amongst the various transport phenomena where fluctuaticsmalysis can tell us, for example, which material properties
contributions were predicted and experimentally observedcontrol fluctuation phenomena. Fluctuation phenomena can
Ref. 4 contains an extensive review of the field and referthen be used to access these properties when they are not
ences. independently known. For example, we will see that the

In the present paper, we concentrate on the supercondugihase breaking time can be very important to determine the
ing fluctuation corrections to the sound velocity and soundiuctuation contribution to ultrasonic attenuation whereas it
attenuation in layered superconductors ab®ye As usual, would not contribute to dominant terms in the corresponding
superconducting fluctuations manifest themselves in threuctuation conductivity. It is by considering a large set of
different ways® (a) The effective number of normal carriers experimental probes that one can make sure that all material
is reduced because some of the electrons exist as transigmoperties are unambiguously determined.

Cooper pairs. This is the so-called density-of-states contribu- In this paper we assume, as usual for fluctuation correc-
tion. (b) The single-particle excitations are Andreev reflectedtions, that we are close enough Tg that the characteristic

off the superconducting fluctuations, as described by the s@air frequency is less than temperatuie dimensionless
called Maki-Thompson term(c) Some of the electrons be- units). This is the so-called renormalized-classical regime.
have as Cooper pairs for a time given by the Ginzburg\We study the case where longitudinal sound propagates per-
Landau time. This is the famous Aslamazov-Larkinpendicular to the layers. This is the most relevant case to
contribution. Layered organic superconductors, in particularstudy since it is most easily accessible experimentaiije

are an ideal class of materials to study fluctuationalso consider the hydrodynamic limit where the electron
phenomena. This is because the relatively low chargemean free patif is much smaller than the wavelength of
carrier concentration and the strong electronic anisotropgound and where the electron collision rate! is much
enhance the effect of superconducting fluctuations and inlarger than the sound frequency. In quasi-two-dimensional
crease the size of the fluctuation regime. The manifestsystems, the Fermi surface is opened in the direction perpen-
ation of superconducting fluctuations in organic materialsdicular to the layers. The coupling to the sound comes from
was found in a number of experimental works on dc magthe modulation of the hopping integral across the layers, tak-
netoconductivity, thermoconductivity, ac susceptibility, ing also into account the electroneutrality condition in the
specific heat, and torque magnetométryPrelim-  moving frame® The Frdhlich model where phonons couple
inary ultrasonic experiments in thex-phase lay- to the electronic density is not valid. The most dramatic con-
ered organic materidls (BEDT-TTF),CU N(CN),]Br, sequence of the open Fermi surface in such a situation is the
(BEDT-TTF),CU N(CN),]Cl and (BEDT-TTF}Cu(NCS), suppression of the divergence in the Aslamazov-Larkin and
suggest that the sound attenuation coefficient is decreased Maki-Thompson terms that often give, by contrast, the most
superconducting fluctuations over a sizeable temperaturienportant contribution to the fluctuation correction to the
range abovel.. However, the effect is much weaker than electrical conductivity. Hence, sound propagation is less
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strongly modified by superconducting fluctuations than theappropriate for layered metals. Heps, is the component of
electrical conductivity. All the calculations are performed for the quasiparticle momentum perpendicular to the conducting
s-wave superconducting fluctuations. Tthevave case needs planes,p is the in-plane momentunt, <eg is the small
a separate treatmeht? interlayer hopping energy, arais the interlayer distance. In
In the following section, we discuss earlier work and this model, the Fermi surface has the well-known shape of a
present the Hamiltonian. The diagrams that enter the calcweorrugated cylinder, and the density of states is given by
lation and then details of the calculation appear in the fol-=m/(2#a). It is important to note that in this model the
lowing sections. The results are gathered in Sec. V and disdensity of statesy, does not depend on the quasiparticle
cussed in Sec. VI. The appendix contains mathematicaénergy. In other words, the derivativéi,/d¢)=0 vanishes.
details on the analytic continuation of digamma functions. This relation is obviously true dt =0, i.e. for noninteract-
ing two-dimensional layers. If there is a small interlayer in-
teractiont, # 0, any cross section of the Fermi surface made
|. THE MODEL AND DEFINITIONS at any value op, still gives the two-dimensiondPD) result

Ultrasonic attenuation in impure metals was analyzed byVith (dvo/9§)=0. One can easily see that this relation is
Pippard'* using the Boltzmann equation method, and byVvalid for any Fermi surface that is opened in the third direc-
Tsunetd? with the density-matrix formalism. Later on, fion (t, <eg) and has circular cross section in the plane.
Schmid?? using Green function methods, derived the effec- AS shown by Tsunef6 and Schmid;’ based on earlier
tive electron-phonon interaction in the presence of impuritiedvork of Pippard" and Blount;” the canonical transformation
taking into account the screening of Coulomb repulsion bethat takes us to the moving frame leads, in the continuum
tween electrons. A key point of the approach of Tsunetolimit, to an electron—ph.on.orj interaction that originates from
Pippard, and Schmid was to consider the electron system int§€ commutator of the infinitesimal generator of the transfor-
reference frame moving together with the ion lattice. In anmation with the kinetic-energy operator. The remaining con-
impure metal, the elastic scattering of electrons as well affibutions from the commutator of the generator of the ca-
perfect screening at small phonon momentum and relaxatioRonical transformation with the electron-ion and electron-
to equilibrium occur in this oscillating frame. In this formal- €lectron interactions are overall negligible. Since a trace over
ism, the electron-phonon coupling appears through the stredgrmions is performed to compute phonon damping, the re-
tensor instead of through the density operator occurring irpult should be independent of the canonical transformation.
the Frdnlich model. The latter model leads to erroneous re-The moving frame is the one best suited for approximations.
sults in the dirty limit'® For a tight-binding model, such as the one we need to

The idea of a moving reference frame was also used bgonsider to obtain the proper open Fermi surface for propa-
Kotliar and Ramakrishnalf, who considered the limit of gation in the perpendicular directiqn,, Eq. (1), the corre-
strongly disordered metal and analyzed the effect on ultraSPonding microscopic derivation of the stress tensor has not
sound propagation of incipient localization near the metaleen performed yet. It is not our purpose to give this deriva-
insulator transition. Reiz&t considered the effect of various tion here. Instead, we follow the footsteps of Bai' Su,

types of inelastic scatteringincluding electron-electron, Schrieffer, and Heegéf,and, more recently, Walker, Smith,
e|ectron-magnon Scattering and weak-localization eﬁe]ns and Samokhﬁ]and assume that the e|ectr0n—ph0n0n Interac-

sound attenuation. tion comes from the modulation of the hopping parameter

The fluctuation corrections to the ultrasound attenuatiodnduced by the lattice deformation. Neglecting umklapp pro-
in 3D metals were estimated in the most singular channel i§€sses, one obtains for the interaction of a longitudinal pho-
the early work of Aslamazov and LarkinAslamazov and Non propagating in thedirection perpendicular to the planes
Varlamov, back in 1979, found the fluctuation corrections in

layered superconductot$.However, these papers did not 1z

hwo(k N a A
consider explicitly the form of the density of states for a He_phz—\/fiG ol 2) (k-2)(e-2)
corrugated cylindrical Fermi surface. That density of states is kp | NMug
energy independent contrary to the assumption made in these t t
papers. In addition, the calculation was done for thenfch #(COSP22) Cp-rk, o Cp.ol Ak A, @

model. Also, Ref. 16 used impurity vertex corrections for the
external vertices in the correlators and we shall see that theil;‘,h_ ; ;
are unnecessary in the hydrodynamic limit when one take!oCiy: M the ion massN the number of unit cellsG a
into account the fact that the calculation of impurity scatter-constant that depends on the der|v_at|(\4)e o(fT;[he hopping inte-
ing should be done in the electrically neutral moving 9ralt. with respect to the strain, whilg,”,c;, ; are, respec-
frame314 For the case of interest, with open Fermi surfacelively, destruction and creation operators for phonons and for
in the perpendicular direction, we find results that are quitééléctrons of spins. The above expression is restricted to
different from these earlier works. longitudinal phonons propagating in the perpendicular direc-
We use the unperturbed quasiparticle energy spectrum tion, hence the wave vector and polariAzaAtiOI:n (zf the phonons
involved in the interaction will satisfjk-z=e-z=1. The

erewy(k)=vk is the sound frequency, the sound ve-

p?— p2 above expression neglects the compression and stretching of
_FlIITPF chemical bonds that are not strictly along the direction of
E(p)| P2 = — 5 + 2t cO8p2), @ opagation,
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Ptk entoy lines, as shown in Fig. 1. In the case of the current-current
correlator, vertex corrections lead to the replacement of the
scattering timer by its transport analogy, .%° For swave
scattering, vertex corrections vanish because the vector ver-
tex ev,, averages to zero upon angular integration at vanish-
ing external momenturk. This argument generally does not
work with the correlator of the stress tensor. However, taking
into account perfect screening, it was shown by Schiid
P: €n the continuum limit that there is no impurity diffusion en-

FIG. 1. The phonon self-energy in the case of an impure meta|hancement of the electron-phonon ve_rtex in the case_of trans-

Solid lines are one-electron Green functions, dotted lines the bar¥€rs€ phonons, and that for longitudinal phonons this effect

phonon propagators, dashed lines with crosses correspond to the negligible i_n the hydrodynamic limkf<1 andw7<1. .
impurity Scattering, and bold circles show the renorma|izedphys|ca”y, thIS comes about fI’OI’n the faCt that the CalCUIaUOﬂ

electron-phonon vertices. should be done in the moving frame and that screening is
perfect at long wavelengths. In our case, the analogous argu-
Il. SOUND ATTENUATION WITHOUT FLUCTUATION ment of electroneutrality leatigo the replacement of the
CORRECTION stress verteXr by F—(F), where the average accounts for

the chemical potential shift. That average is precisely what
8s needed to make the impurity vertex correction vanish. In
addition, in our specific cas€F)=(gcosf,a))=0 to the
order in phonon wave vectdrthat we need.

The phonon self-energy without fluctuation correction

The sound attenuation coefficient is determined by th
imaginary party(k) of the complex frequencw(k) where
the pole of the phonon Green functi@(k, ) is located.
This quantity obeys Dyson’s equatfdn

D Y(k,w,)=[D°%K,w,)] 1~ TI(k,m,). 3) may finally be obtained from
Expressed in bosonic Matsubara frequeneies- 27 vT us- ) d3p
ing units k=1 =1, with v an integer, the quantity (k,w,) =29T>, 5c0S(p,2)G(&n,p)
Do(k.,) o (2
X G(s,+w,,p+k). 6
i W2(K) (&n p+k) (6)
D (k,®,)=— (4)  To evaluate this integral whenis finite, it is easiest to make

2 2
T (k) the change of variables= (pf— pZ)/2m+2t, cosp,a):

is the phonon propagator in the noninteracting case and
II(k,w,) is the phonon self-energy. In an impure metal, the d3p m [« 2m mla
diagrammatic representation Hf(k,w,) is given by Fig. 1. f (2m)3 - Wf_mdgfo d@f_W/ade @)
In the theory of electronic conductivity, one would consider a
similar diagram for the current-current correlator with theand to evaluate the integral ovéfirst, being careful to add
bold dots representing the components of the vector velocitgnd subtract the clean limit result to insure convergence. Af-
ev,=e(déldp,), where¢ is the electronic energy and,  ter summation oves,, one should make the analytic continu-
the @ component of momentum. In the case of sound attenuation of the external phonon frequency following the rule
ation, the vertex comes instead from the stress tensor corrés,— w+id. For sound, it is justified to work in the hydro-
sponding to the electron-phonon interaction E2). Using  dynamic limitw7<1 even for very pure systems. The quan-
Egs.(2) and(4), one obtains for this vertegcosp.a) where  tity kvg7=k{ also appears in the loop integral. Since the
g is a constant. Fermi velocity is usually much larger than the sound veloc-
Each solid line in Fig. 1 corresponds to the electron Greerity, kv > w=vK, the limit k¢>1 may often be reached in
function which, at finite temperature in the presence of im-ultrasonic experiment$ even though we always hawer
purities, is given by <1. Hence, expansion of the result in powergk6éfmay not
be justified. In our case, however, since we are considering
B sound propagation perpendicular to the layegsis reduced
G(p.en) = is,—&(p) ©) by the anisotropy ratid, /t;, which can be as small as
" 104, so that it is justified in our case to consider the limit
whereé(p) is the quasiparticle energy and where we definedk¢<1. One can thus expand in powerswf andkf. The
ep=e,+1/(27)sgn(e,) with e,=7T(2n+1) the Matsub- terms with odd powers of give corrections to the sound
ara frequency and the elastic scattering time. The quantity attenuation while the terms proportional to even powers of
i/(27)sgn(e,) is the imaginary part of the quasiparticle self- contribute to the sound velocity. The first corrections that
energy. The real part of the self-energy is constant and igvolve k appear to orderd7)(k¢)? because of the, inte-

absorbed in the definition of the chemical potential. gral. In all that follows then, we sdt=0 and expand in
In principle, one should include the vertex corrections thafpowers of @7).
are represented, to leading order pr¢) ! with € the elec- From In[II1R(w)]=—g?vow7 One can obtain the contri-

tron mean free path, by the nonintersecting dashed impuritpution to the imaginary part of the phonon frequeticy
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wheree~(T—T,.)/T., andy(z) is the digamma function. In
(1:} the above Eq(11), the angular average over the Fermi sur-
face with the spectrum in Eql) reads
% :

((AE(Q,P)jp)=p) D)E.5.= 2{(vEq)) >+ [4t,sin(q.a/2) 1%}

O

=7'D¢?, (12)

aPu\ ? whereD is a generalized diffusion operator.
6 Returning to Fig. 2, the shaded semicircles correspond to
vertex corrections from impurity averaging and are given by
. - l

FIG. 2. Feynman diagrams giving the leading-order corrections
from the fluctuations to the sound attenuation. Diagram 1 is of thddiagrams 3, 4, 9, and 10 of Fig. 2 contain the impurity
Aslamazov-Larkin(AL) type, diagrams 2-4 are of Maki-Thompson ladder in the particle-particle channghaded rectangie
(MT) type, and the diagrams 5-10 are of the density-of-states R
®(—8182)(1 Dg? H

61— 54|
)\(q181182): qu . (13)
|81_82|+ ﬁ@(_{;‘l&‘z)
Tle1— ey

<>°

(DOS) type. Solid lines are the normal state Green functions, wavy
lines the fluctuation propagators, shaded semicircles and shadddc(0;e1,82) =

rectangles the impurity ladder averagings, dashed lines with cross 2mvo le1=eal7 (61— )
the single impurity scatterings, and bold circles the renormalized
electron-phonon vertices. Adapted from Ref. 4. while diagrams 7 and 8 have a single impurity line, which
corresponds to the factor 1/42Zvy). One can see that all
Y(w)=3wo(k) IM[ITR(w)], (8 other insertions of impurity lines either lead to diagrams that

where is located the pole of Dyson's equati®). We as-  vanish, or give negligible corrections.

sume that the real part of the frequency at which the pole is
located, w, is close to the unperturbed frequency so that !V. CALCULATIONAL DETAILS FOR THE DIAGRAMS

wo(K)~ wo(k)?/ w(k). The power attenuation then reads A. MT and DOS diagrams

a(w)=—2v(w)lvg, (9 We illustrate the procedure to evaluate the diagrams in
Fig. 2 by finding the expression for diagram (Rlaki-

where v, is the sound velocity. The sound attenuation 'n'Thompson type In analytical form it is given by the integral

creases withr, as does conductivity.
The renormalization of the phonon frequenefk) is ob-
tained from the real part of phonon self-energy TI(MD (4  k)=2g

R 2 2 . k)K(q!QK!wy)!
R IT™(w,k)]=—gvo[1— (w7)“] using

(15
— R
o(K) = wo(K) 1+ ReIR, 10 here
11l. DIAGRAMS FOR FLUCTUATION CONTRIBUTION K(q,Q,,)
TO SOUND ATTENUATION
The preceding discussion shows that one can consider the :TSE AMd,en, Qx—en)M0,ent 0, Qy—en—w,)
same set of diagrams, illustrated in Fig. 2, as for the "
conductivity??? substitutingg cos,a) for the vector verti- R
cesev, at the extreme left and right-hand sides. Here, each XJ scosp,a)cod (4.~ p,)alG(p,en)
wavy line in the figure corresponds to the fluctuation propa- )
gator (Cooper ladderL(q,€,) which, asT—T;, has the XG(p+k, et w,)G(q—p,Q—en)
form ’ . ’
XG(g—p—k,Q—ep—w,). (16)
L(g.Q + |Qk| 1 For simplicity, and as in experimefitwe assume that the
(0,Q )=~ vo| € l/f . A= .
2" anT 2 sound propagates in the direction perpendicular to the con-

ducting layers, so thak has only one componentk
=(0k,). The most singular contribution from the fluctuation
' propagator(q,(,) comes fromgq— 0. Therefore, one can
neglect theg dependence in the electron Green functions. We
(12) also set Q,=0 since superconducting fluctuations are im-

(AE@P)p=p)?es (1|0
(47T)2 (2 477T)
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portant in the renormalized-classical regime where the chamwherer = 16t 5/v2<1 is the anisotropy parameterand Ty
acteristic frequency for the pair propagator is less than temis the phase-breaking time, which provides the convergence

perature. of the integrals over the pair momentugnat small wave
Performing the integration overin Eq. (16) first, one has  vectorq.® The coefficienty has the meaning of the square of
for K(q,w,)=K(q,0,w,): the effective coherence lengthin the isotropic 2D cade
> ! E(Tr) (T”F)2[¢(1+—1 ) z/z(l)
K(q,w,)=mcogq,a)T ~ n= T)=— - —ul =
(9,0,) 10,a) 2 ot |1DY) 2 2 4mx 2
1 /1
1 1 S (22)
(17) Amx "\ 2] ||, .

>< ~ ——— ~ 1
(2|8n|+Dq2) |8n+wv|+|8n|

that is then divided into two parts, namely, the first part hasAt T=Tc, the anisotropy parameter can be writtenras
EE _ ’ ' =4£2(0)/a? wh 0) is the C ir size in th
the summation in the intervak,e(—*,—w,)U[0>), ¢1(0)/a where £, (0) is the Cooper pair size in the

L N : . erpendicular(z) direction. We will also use the phase-

while in the second one the summation is done in the mterva@ . = 2 .
e[~ w,,0) reaking parametey,=2»/(vg77,) instead ofry.

&n v The integral in Eq(20) results in the so-called anomalous

MT contribution. Note, however, that while the leading term

K(g,w,)=2T > 1 _ 1 _ in the expansion of the numerator of Ed9) gave the above
Y =0 (2e,+w,+Dg?) (2e,+Dq?) result, Eq.(20), the g>-term of the expansion cancels the
diffusion pole. This “regular anomalous” term, whose ana-
1 log was overlooked in early work on conductivity fluctuation
X — (24 ; ;
26 4w 471 corrections’? results in the same type of integral as that
e given by the first part of Eq(18) with g=0:
-1
T 1
+— - d3 cogq,a
o, b7t n;v (2e+20,+Dq?) f ; 2 E(q.z : : (22
(2m)3 e+ nqff+r sir(q,a/2)

! (18)  Together, these two terms give so-called regular MT contri-

X—,\.
(—2e,+D0?) bution, which generally has weaker temperature dependence
than the anomalous MT part.
Each of these two contributions leads to a different tem- The evaluation of the diagrams 5—8 of Fig. 2 results in
perature dependence. The limits of summation in the secong@tegrals of the type
part of Eq.(18) can be obtained by taking into account the
fact that frequencies,=#T(2n+1) are of the fermionic j d3q 1
(

(23

type while the sound frequenay,=2#Tv is bosonic. The

3 2 H !
summation oveke, in the second part of Eq18) results in 2m)” et nqftr sinf(qza/2)

which give the density of states part of the fluctuation cor-

1 Dg? 1 Do*+2w, rections.
m cog q,a) Not aat) U2t T The remainingy integration in Eqs(20), (22), and(23) is
T Ar(lt w7 - similar to that encountered for the conductivity calculations
v (Dg°+w,) and is described in much details in the revieand in Ref.

(19) 22. We should emphasize that&s-T., the main tempera-

The analytical continuation of this sum involves someture dependence of the fluctuation diagrams comes from
subtleties that are discussed in the Appendix_ these integra|S. The remaining “bubble,” which consists of

One can see that 8- T, the maing dependence in Eq. Green functions and impurity lines, has a weaker dependence
(15) comes from the fluctuation propagatoq) and from ©n Tr. It provides the coefficient in front of the function
the poles ofK(q,w,). Therefore, it generally suffices to ex- Of €. o ) )
pand the regular part &€(q,w,) in powers ofg and to keep In the conductivity calculation, one can drop the diagrams
the very first nonvanishing terms of the expansion. containing the impurity ladde(3, 4, 9, and 10 of Fig. 2

The singular part of Eq(19) comes from taking the This is because they contain the integration of one vector
q°-term of the numerator together with the diffusion pole Vertex with the Green function triangle. Angular integration
1/(|5q2+w,,) and analytically continuing them to real pho- over p leaves only terms containing powers of the small

non frequencies. One arrives at integrals of the type factor (uF_kT). In the_general case of sou_nd attenuation and
propagation these diagrams would contribute, but for sound

4 cogq,a) propagating perpendicular to the layers the integration over
J q _ L the open Fermi surface of the vertgxos(,a) also leads to
(2m)% (DQ?+1Ury)(e+ nqﬁ+r sirf(q,al2)) a vanishing contribution for diagrams 3, 4, 9, and 10 of Fig.
(20 2 to leading order irk¢.
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The smallw expansions of the DOS diagrams 5, 6, and of V. RESULTS
the regular contributions to the MT diagram 2 each lead to : . .
e . In this section we collect the results for, in turn, the fluc-

zeroth-order terms, the combination of which does not sum _ .. . .

: . . - tuation corrections to the sound attenuation and then to the
to zero. One notices the difference with the conductivity cal-Sound velocit
culation, where such a cancellation of zeroth-order terms en- Y-
sures that there is no anomalous diamagnetism afgve
The DOS diagrams 7, 8, and the anomalous part of the MT A. Sound attenuation
diagram 2 do not have zeroth-order terms that would contrib-  Tha odd powers of the expansion of the analytically

ute to the leading renormalization of the sound velocity.  continued results for the diagrams of Fig. 2 give the fluctua-

tion corrections to the imaginary part [fi%(w)] of the re-

tarded phonon self-energy. One can then use this result to
Finally, let us consider the Aslamazov-LarkiAL) dia-  Obtain the sound attenuation from the imaginary part of the

gram 1, which gives the main fluctuation correction to mostPole of the propagator, as in Eq8) and(9).

of the transport phenomena. In the case of sound propagation All diagrams contribute to the polarization propagator to

perpendicular to the layers, the analytical expression for théeading order inw. The different contributions to the sound

B. Aslamazov-Larkin diagram

AL diagram reads

d3q
(2m)°
X L(q!Qk)L(qrﬂk+ wv)!

N80, k) =-2¢TS [ — L8000,
[

(24

where

d3

B(0, Q. 0,)=T2 NQ,eq+®,,~en)\(0,en, — &)
p
Xf (ZW)Scos(pza)G(p,sn)G(p.sn+wV)

XG(q—p,—€n), (29

In EqQ. (25), we have neglected thHe, dependence of the
electron Green functions. One can also g0 and ex-
pand G(q—p,—&,) in Eq. (25).?2 For sound propagating
perpendicular to the planes, we can usel [See Eq(42)]
to find the appropriate expansion parameter &g—p,
—&,) appearing in the integral, namely,

&(q—p)—£(p) 2t {cog(q,—p,)a]—cogp,a)}
maX 7 T,1/r} maxX 7 T,1/7}

After the angular integration in E¢25), the leading nonva-
nishing term reads

4ty yvo[1—cogq,a)]

2
UF

B(a)=~— (26)

Following the Ref. 22, one can integrate H@4), which

after the analytic continuation and expansion in powers ,of
results in the integral of the type

i

in the nth order ofw expansion. To leading orders in, the
integrals in Eq(27) are not divergent a&— 0. The resulting
AL terms are finite and comparable with other fluctuation
contributions.

d3q sint(q,al2)
2m)% [e+ nqf+r sirP(q,a/2)]"*2

(27)

attenuation coefficient are then extracted from the imaginary
part of the retarded fluctuation polarization operator. In the
most general form, they can be written as

g°w’vg

EEFV

aP(T,0)= KATDIP(er,y,), (29

S

whereB denotes the particular chanr@&OS, rMT, aMT or
AL). In Eq. (28), f*)(€,r,y,) means the function of tem-
perature which comes from the integrals in E@X)), (22),
(23), and(27), and which also depends on the material prop-
erties. The coefficienk!?)(Tr) comes from the integration
of Green functions and impurity blocks in the expression of
the type(16). It has weaker temperature dependence at
—0 thanf®(e,r,v,), and it basically shows how the im-
purity concentration affects the result.

In the following, it will be more convenient to use the

dimensionless parameteXTr) = 5/(rvg)2. We list here the
functions f(#, which also appear in the conductivity
calculation?? and the coefficients'?) . For the reader’s con-
venience, we also give the limiting expressiong @t which
depend on the relation betweenr, andy,, where appli-
cable.

DOS
Inr, e<r
2 1 !
fCO9(er)=In| ——|~— =
Vet Je+r 2 Ine, r<e.
(29
o1 ) (1 1
V\2) T2V 2 Y ax
K(DOS)(X):
att 2.~
8w xn(X)
287(3
28 )’ w<l
3
~ (30
PENG
-, >
7{(3)

Regular part of MT
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1, e<r
e—Je+r)?
f(”‘”)(e,r)=—(\/— r. r 3D
r —, I<e.
4e
3 —2mXy) L I
) XTI\ 2t Zax) TV 2
Karp (X)=— o
167X n(X)
147(3
4§g ), x<1
~ 77 (32
2X, x>1.
Anomalous part of MT

1
f@MD(er,y,)==| —1+
i Vyo(yet 1)+ Ve(etr)

[ 1

, 6<y¢<l’
\r7¢
1
=" Vp<E<I
Jre
~\ = <r< (33
< 2¢’ Ve €
—, €E<I<y
— r<min ,EL.
\8’)/(/)6 {7¢> €}
T
K V=g (34
AL:
1 | € / r
(AL, ) — _
f (er) r[l E+I’\1+ 2(e+r)
1
-, €I
r
~ (39
3r
—, [I<e.
8€2
o
=g (36)

The fluctuation terms scale like? just as in the corre-

PHYSICAL REVIEW &9, 224503 (2004

B. Sound velocity

The renormalization of the phonon frequeneyk) ob-
tained from Eq.(10) provides the fluctuation corrections to
the sound velocity when we use(k)=uvgk. It should be
emphasized that there is no anomalous MT term in leading
(zeroth order of w, while to higher order ofv all types of
temperature dependencies appear. To leading andethe
nonzero terms give, foA w/w=(w— wp)/wq, the expres-
sions in a form

w®( w): vd( w):g Vngﬁ)f(B)(e,r,w).

0] Usg EF -

For DOS, rMT, and aMT terms, the temperature functions
f®)(e,r,y,) are given by Eqs(29), (31), and(33), respec-
tively. The temperature functiofA-*)(e,r) for the AL dia-
gram is given by the Eq41), which is different from that for
attenuation(35). We then obtain for the coefficienig” :

DOS

kPO9=1, (39)
Regular part of MT
KM =—3, (39
Anomalous part of MT
x@MD =0, (40)
AL:
K(AL)f(AL’v)(E r):_ 1+E —1+ €
v ' r Vetr
1, e<r
~ = 3r (41)
—, I<e.
4e

VI. DISCUSSION

Comparison of the normal state results without fluctuation
corrections found in Sec. Il with Eq$28) and (37) above
show that the fluctuation corrections are smaller than the
normal state contribution by a factor dfe-. For layered
organics, the Fermi surface parameters of Ref. 25 lead to
T/eg~10"2. The temperature function&” increase this
ratio atT— T, thus making the fluctuation corrections ex-
perimentally measurable.

It can be seen from the results of preceding section that it
is the k®)(T7) coefficients that determine the sign of the
fluctuation sound attenuation and sound velocity. The coeffi-
cients for sound attenuatior)(T7) in Eq. (28) have
weaker temperature dependence than that of the functions
f£. One can see that these coefficients in all fluctuation dia-
grams are finite as (A)—0, and that they are of the same
order of magnitude in this limit. In the oppositelean limit

sponding normal metal case without fluctuation correction. (T7)>1, these coefficients increase as a power law of) (T

224503-7



MAR’ENKO, BOURBONNAIS, AND TREMBLAY

2+

0.004 0.006 0.008 0.010
(T-T )T,

e
0.000 0.002

FIG. 3. The temperature dependenced &9 at various values
of anisotropy parameter=10"1-10"4.

We recall that there is an analogous formal divergence of the
DOS and MT coefficien$ in the fluctuation conductivity
but in that case they cancel each other in the limit)(T

T

f(fMT)

PHYSICAL REVIEW B 69, 224503 (2004

10 b
X —r=10*
N\, -3
R b r=10"| |
0.8 D oo =102
J N [ r=10"
o6 ff - e — 1
04 1t . 1
2l T i
0.0 s '
0.000 0002 0004 0006 0008 0010
(T-T),

FIG. 4. The temperature dependence 6¥' ™) at various values
of anisotropy parametar=10"1-10"4,

~3 ps, which leads to ¥~1 atT=T,.
The phase-breaking time, can be estimated from the

>1. In our case, the formal extension of our results to theexperlmental data on fluctuation contribution to transport co-

limit (T 7)>1/\/e would be incorrect because the local ap-
proximation for the fluctuation propagat@tl) and the im-
purity vertex (13) have a natural limit of validity (F)
<1/\/e (the so-called local clean casé

In contrast to the coefficients for sound attenuation
«)(T7), the coefficients in the case of sound velocit{f’”
in Eq. (37), do not depend on 4, thus simplifying the esti-
mation of the sound velocity corrections in particular mate-
rials.

The overall magnitude of the fluctuation correction is
given mainly by the temperature functiofi$). These func-
tions depend on the anisotropy parameteand the phase-
breaking timer,, which are defined by the intrinsic material
properties. The temperature function corresponding to a
given type of diagram is identical for sound attenuation and
velocity, except for the AL contribution which has tempera-
ture dependencies that differ. In general, all the fluctuation
terms remain finite a¥— T.. The asymptotics of the corre-
sponding temperature functions have been given in the pre-
ceding section and they were also discussed elsevihere.

The functionsf(®) also describe the crossover between
two and three dimensions, where by three-dimensions we
mean that the superconducting correlation length is much
larger than the interlayer spacing. The two-dimensional be-
havior corresponds te>r and the three-dimensional behav-
ior to the opposite limitr>¢. The crossover occurs at
~r, namely, when the superconducting correlation length
£,(0)|e| Y2 in the perpendicular direction becomes of the
order of the interplane spacing.

In order to compare the contributions from different dia-
grams, we consider a range of parameters which is realistic
for layered organic superconductdsee Figs. 3—6 The es-
timation for the anisotropy) /t, ~4000, where is the in-
tralayer transfer integral, is in agreement with the magnetore-
sistance data forx-(ET),Cu(NCS).?’ This gives an
anisotropy parameter of the order ot 10~ 4.

Concerning the scattering time, its estinfAterom
Shubnikov-de Haas experiments #3(ET), materials gives

224503-8

f(aMT)

fam

efficients using the appropriate expression for the MT dia-
gram. The analysis of the magnetoresistance data on YBCO
in Ref. 29 resulted in values,~1/T. Later on, the authors

of Ref. 22 claimed that neglecting the orbital pair breaking
effects while leaving the Zeeman contribution to the MT
diagram in Ref. 29 can be incorrect. Hence, they extended

5 T T T T g
a) ¥,=01 —r=10*
4 — r=10:: 1
.......... ,=10_'
3! \\\-\\ --------- =10 4
2ff T ]
8.600 0002 0004 0006 0.8&3“"-;)-.610
(-1,
100000 [ ' ' ' i ]
10000 ,
1000 { ]
100}, .. R
10 i;\' e T ]
P e ]
] ]
001k . e g
0000 0002 0004 0006 0008  0.010
(T,

FIG. 5. The temperature dependence@t" (a) at fixed real-
istic y,=0.1 and at various values of anisotropy parameter
=10"1-10"%, (b) at most realistic for thec-(ET), family com-
poundsr =10"* and at variousy,=10"*-10"°.
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10000 | ' ' ' ] ~10"2% and f@MN(e=0)~50 aty,~10 2. Thus, at some
E Y4, the aMT can be much larger than all other contributions.
However, while it is quite large a¢=0, the aMT part de-
creases with increasing faster than the DOS contribution.
Indeed, atr=10*, the ratio f(P°9(e=0.002)f(P°9 (e
=0.01)=1.3 shows that the DOS contribution has not
changed much in that temperature range while the corre-
sponding ratio for aMT is f@@MD(e=0.002)fF@MD (¢
=0.01)=5 for the same and in the relevant range of; . In
other words, the logarithmic asymptoti¢89) of the DOS
diagram at/e— 0 wins over the power-law dependencies of
, , , , , ] the aMT term(33).
0000 0002 0004 0006 0008 0010 One can see that next order terms in the frequency expan-
(TTHT sion for the sound velocity and sound attenuation would con-
ore tain the factor (/T)2", wheren=1,2, . ... Thetypical ul-
. . . . . . trasound frequency is of the order ef~100 MHz. At T
............................................... —r=10* =T.~10 K, the relevant frequency to temperature ratio is
-------- =10° [ thus of the order ¢/T)2~10 7. One can check, for ex-
------ r=10° ample, that in order to compensate for such a small factor,
---------- r=10" the parametery, in the anomalous MT term at~ 1074
should be as small as 1€, corresponding to unreasonably
________________ large 74~ 10°7. We conclude that, in our model, the sound
b velocity should be increased by the fluctuation corrections
given by the DOS term.
1 Finally we would like to comment on the applicability of
our model with regard to the character of interlayer electron
.0 : - transport in organic conductors, a subject which is still hotly
0000 0002 0004 0006 0008  0.010 debated. The interlayer tunneling of electrons can be coher-
(T-THT, ent or incoherentsee Refs. 30,31 and references therein
o Following the terminology of Ref. 31, we should distinguish
FIG. 6. The tem_per:\Eur)e dependence of AL CO“_”'?EE'@SO between two limiting cases of incoherent interlayer transport,
the sound attenuatioff*, (b) to the Souf‘fl Ve'°4°'ty‘ “al strongly and weakly incoherent. First, in the strongly inco-
various values of anisotropy parameter10™"~10"". herent case the intralayer electron momentum is not con-
served in the tunneling processes between adjacent layers
; . , o because the tunneling can be accompanied by strong elastic
~1007T being still acceptable for the analySfA similar or inelastic processes. In this case the motion of electrons

estimate was chosen by Fhe authors_ of Ref. 10 to predict .thﬁetween the layers is diffusive and the electron band states in
magnitude of the fluctuation corrections to the nuclear spin;

; . i AN the z direction and the corresponding Fermi surface cannot
lattice relaxation rate and the NMR Knight shift in high- " Gatined. Our model is invalid in that imit. It is valid
cuprates. To the k_)est of our knowledge, no relevant analys'ﬁowever, in the second case, namely, for weakly incoherent
e e o ket e Soqmeing, tat cccurs where. <1 n it case e i

X ’ ) . . ayer electron momentum is conserved in the tunneling pro-
satisfy the relatlonr_d,> T W'thOUt .IOSS O.f general!ty t_hen, ess and the electron wave function in adjacent layers has
we assume that pair breaking by inelastic scattering is wea ome overlap, but there are many in-plane collisions between

; —10-3_ 2
enough and we cc_)nS|_d%, 19 1075 . tunneling events. Our approach is also valid obviously in the
The aMT contribution vanishes to leading orde? for coherent case whergt, > 1

sound velocity. With the above estimation for the anisotropy It is clear from our results that we can also consider two
parameter, one can see that the AL part as yvell as the r?gu%fher limiting cases, namely, the clean limit5 1) and the

MT part give th? least 'mpgrtam nonvamshmg(rcMoTr;tnbunonsdirty limit (T 7<<1). The latter always corresponds to weakly
ti) llsoundf&eLl'?;:lty(orijir “; ). Indefﬁ’ :cm?r?f Doé‘g’r) incoherent tunneling while both coherent and weakly inco-
= 1IMs o (e,r)=1 at anyr, while for the CON  herent tunneling can occur in the former. This can be ex-

ibuti i (DOY = ~ ~10°4 .
t”bll:Jt'on' I'mErOIt (t(_e,r) th(llz)"]{(_‘:)/r)t_ ° a; rth 1?AL.t plained as follows. We have assumed throughout k&t .
or sound attenuation the contribution of the €M That parameter takes the following limiting forrffs:

can be significant neaf., by contrast to its contribution

1000

100

f(AL,U)

10

1

b) 10

0.8 1!

0.6

fALY

0.4

0.2

————.—

the range of the realistic values of, to 7,<10/T with 7,

to the sound velocity, since lim,of A% (e,r)=1/r. How- t2r
ever, it decays much faster than all other fluctuation terms X —, Tr<l
above T.: f(AL9(¢=0.002)F AL (e=0.01)=23 with 4£7(0)
lim fALA)(g)~1/e? i r= ~ (42
te—0 g)~1le*. At the same time, aty, a2 2
~10"3-10 2 andr~10 4, we see that the anomalous MT L T,
>

temperature function is largef(®"D(e=0)~500 at v,
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where atT=T,, & (0) is the size of the Cooper pair per- Thompson diagram is proportional tex{T)? and generally
pendicular to the plane. The conditions<1, and <1, can be neglected unless phase breaking is extremely low.
corresponding to dirty case, are consistent only with therurther details of our calculations may be found in Ref. 32.
weakly incoherent tunneling since they lead td,()?<Tr It should be noted that our results on sound attenuation
<1. On the other hand, for 71 the conditionr<1 is are in qualitative agreement with the preliminary experimen-
consistent with both coherent and weakly incoherent tunneltal data’ These experiments are currently in progress. The
ing. This explains why in the preceding discussion we dis-detailed analysis including the comparison with the present
tinguished only between the clean and dirty limits. Note thatheory will be published elsewhere.

the crossover from clean to dirty limit occurs ag/T To make actual comparisons with experiment, one may
~ver, namely, when the elastic mean free path becomeseed to consider several other physical effects. For example,
smaller than the thermal de Broglie wavelength. strongly incoherent interplane tunnelfigand d-wave

In summary, the superconducting fluctuation correctionssuperconductivit’ may have to be considered. In addition,
to the sound attenuation, in a realistic range of parametersne may need to include in the fluctuation propagator Eq.
are given by the sum of the DOS, anomalous MT and AL(11) mode-coupling terms that will allow one to go beyond
terms, which decrease the normal state attenuation. In comaean-field theory in the description of the crossover from
trast, to leading order inv, the corrections to the sound two to three dimensions.
velocity are given by DOS diagrams, because the expansion
for the anomalous MT diagram begins at ordewnhile the ACKNOWLEDGMENTS
AL diagram is small to this order.
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(d) from AL diagram. These contributions have different

signs and their magnitudes strongly depend on material prop-APPENDIX A: ON THE ANALYTICAL CONTINUATION

erties such as anisotropy and phase-breaking processes. For oF THE DIGAMMA FUNCTION OF COMPLEX

longitudinal sound propagating perpendicular to the layers, ARGUMENT

the open Fermi surface condition leads to a suppression of

the divergent contributions to leading order, so that fluctua- We shall discuss an important mathematical issue occur-
tion corrections to sound attenuation are expected to genefind in the evaluation of the anomalous MT contributid)

ally be much smaller than the fluctuation corrections to con2nd its further analytic continuation, namely, let us look at
ductivity. the typical sum over the fermionic Matsubara frequencies

The leading temperature dependencies with respett to
of the fluctuation corrections to the sound attenuation have 1
the sameaw? scaling with frequency as in the impu¢dirty) Tn:() e (A1)
metal without fluctuation correction. To this orderdn all "

four types of temperature contributions are present. As Werhe expressiorfAl) appears if one decomposes into partial
move close tdl;, the fluctuation contribution decreases thefractions the initial sum ovet,, in the anomalous part of the

sound attenuation below its normal state level, at least fofjaki-Thompson diagram and neglects the small terms

rea_ll_lrs;tlcl Vatlallfrfs gf tTe ’t"i“ar'gerlarlrpatriarr??te:i. nd velocit ~Dg? in them. One can easily evaluate the s(&i) using
€ leading fiuctuation correction 1o e Sou €0 ihe well-known representation of the digamma function
does not depend o, just like the normal state term. To this

order, there are only three types of temperature dependencies 1
coming from the density-of-states diagram, AL diagram and T 1 1 ‘ "

VIl. CONCLUSION

v—1

1
§+V

from the regular contribution of the Maki-Thompson dia- h=0 En 27
gram. The overall fluctuation correction in realistic material

situation should be dominated by the density-of-states conwhere y=0.577 216 is the Euler constant. Herecomes
tribution and should increase the sound velocity as we apfrom the external bosonic Matsubara frequenay,
proach T.. The anomalous contribution of the Maki- =2#Twv, with v an integer. At the same time, it is easy to

+2In2+ y], (A2)
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SUPERCONDUCTING FLUCTUATION CORRECTIONS TO. ..

see that the straightforward change of variabte—n’'—1
transforms the initial expressigi\l) in a way that one ob-
tains the alternate result

+2In2+vy

_El —,Zzllﬂ(%—v :

n=-—v &

v—1
1
T —=-T
n=0 €p

(A3)

As long as we deal with the Matsubara frequencies
=27 Tv these two results EA2) and (A3) are equivalent
because of the relation

1
Y52
and the fact that tanfz) =0 whenz=v is an integer. There-
fore, at this stage we are free to choose either (Bg) or

1
§+z + tan(7z), (A4)

=y

PHYSICAL REVIEW &, 224503 (2004

It is crucial to choose either E¢A2) or (A3) as the result
of the summation before we do the analytic continuation.
The choice is determined by whether we want the advanced
or the retarded response function. Indeed, consider(B@ds.
and (A3) as general response functiong™(w,)

=X(z)|2=iwyoc (3 +v) on the Matsubara frequency domain

w,. If we then analytically continue the argumentio,
—w+in of Yy[1/2—iz/(27T)], the poles of resulting func-
tion are all located below the real axis of the complex plane
thus giving us the retarded functiopi(w). On the other
hand, the analytic continuation=iw,— w—i % of the argu-
ment of Y 1/2+iz/(2=T)] gives us the advanced response
because all its poles are located in the upper half-plane.

We thus conclude that if the digamma function appears in
our calculations, we are free to use either H&&) or (A3)

(A3) as the result of the summation. The distinction appear§ecause they are equivalent, as long as we deal with Matsub-
when one tries to do the analytic continuation to real fre-ara frequencies. However, before doing the analytic continu-

quenciesiw,—w+i7n. After analytic continuation, Egs.

ation, we have to decide whether we need the advanced or

(A2) and (A3), which we obtained from the same diagram, the retarded function. If we want the retarded function, we
are not equal to each other anymore. Indeed, for nonintegerse the rule given by EqA2) and deal only with digamma

from Eq. (A4).

to obtain the advanced response.
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