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Spiral Magnets as Gapless Mott Insulators.
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PACS. 72.20—i — Conductivity phenomena in semiconductors and insulators,
PACS. 75.80—m - Magnetically ordered material: other intrinsie properties.

Abstract. — In the large-I7 limit, the ground state of the half-filled, nearest-neighbor Hubbard
model on the triangular lattice is the three-sublattice antiferromagnet. In sharp contrast with the
square-lattice case, where Goldstone modes never have a charge component, it is shown that
beyond leading order in t/I7 the three Goldstone modes on the triangular Iattice, at finite ¢, are a
linear combination of gpin and charge. This leads to non-vanishing conductivity at any finite
frequeney, even though the magnet remains insulating at zero frequency. More generally,
non-collinear spin order should lead to such gapless insulating behavior,

Non-hipartite lattices, such as the triangular or f.c.c. lattice, have a partieular appeal for
theoretical studies of correlated electrons because they lift many of the degeneracies present
in bi-partite lattices such as simple cubic systems. On the triangular lattice, for example, the
ground state of the Hubbard model at half-filling shows a large number of possible
zero-temperature phases: paramagnetic, spiral magnetic order, and linear spin density
waves in either metallic or insulating phases [1,2]. This is to be contrasted with the same
model on a square lattice which has an antiferromagnetically ordered ground state for all
possible values of the interaction.

In this paper, we show that for lattices which do allow spiral (non-collinear) magnetic
order in the ground state of the Hubbard Hamiltonian, a new phenomenon oceurs. In the
large-I7 limit, but for a finite value of the hopping integral, these is a coupling between
charge and spin excitations in the non-collinear spin state. In other words, in such a
magnetically ordered state the three Goldstone modes hecome a linear combination of spin
and charge excitations and the poles appear in both spin and charge response functions. Since
the Goldstone modes are gapless, this raises the issue of whether the system remains an
insulator. In fact, if we define an insulator by the vanishing of the zero-temperature d.c.
conductivity or equivalently of the Drude weight [3,4], the Goldstone poles in the charge
fluctuations do not change the fact that the system is insulating. Nevertheless, the dynamical
conductivity is gapless and we conclude that the magnetieally ordered state is an insulator
but with no charged-particle-hole excitation gap. This illustrates very well the conclusion of
Kohn [3] that the existence of an energy gap (in particle-hole excitations) is sufficient but not
necessary to have an insulator. The non-collinearly ordered states studied in this letter are
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then unlike any other examples of Mott-Hubbard insulators where there is generally a gap in
both single-particle and charged-particle-hole excitations. We first demonstrate that this
mixed spin-charge character is due to the non-collinearity of the magnetic structure and is
valid in an arbitrary number of dimensions(?). The case of the triangular lattice is then
studied as a specific example,

To derive the spin-charge coupling, we start from the general one-band Hubbard model

— 2 tilelen +efen) + UZng ngy, (1)

Ih.r~T

where the first sum is over pairs of sites, {;; is the hopping integral and [J the on-site Coulomb
interaction. We remark that sinee we are ultimately interested in the g — 0 conduetivity, it is
crucial that we work with a conserving (gauge invariant) approximation. The simplest such
approximation consists in describing the ordered state in the Hartree-Fock approximation
and the fluetuations in the generalized random phase approximation (GRPA). The GRPA, in
the ordered state, is an expansion in ¢/I7 and henee becomes more and more aceurate as [J
becomes large, contrary to what happens in the paramagnetic state. Schrieffer ef al. [6] have
shown that this approach does indeed reproduce the spin wave results on the square lattice in
the Heisenberg (t << [J) limit. The main result of our paper, namely the mixed spin-charge
character of the Goldstone modes, occurs in next-to-leading order in /17 when the ordered
moments are not collinear and it remains valid in any dimension.

To proceed with the caleulation, we first define S* (i) = (1/2) 2 Ci o450, 8 dimensionless

four-component spin and charge operator. (z = s, &, ¥, 2, smd s is the unit matrix.) We
congider the general class of magnetieally ordered states with planar spiral order

(S{) + #(ST) = Sexp[iQ -R], (2)

where § is the order parameter representing the average moment on each site. Without loss
of generality, we take the spiral in the (r, z)-plane. Examples of such states for
two-dimensional lattices lying in the (x, 7)-plane include the collinear antiferromagnet on the
square lattice, @ = =/a¥ + =/ay, and the three-sublattice antiferromagnet on the triangular
lattice, a 120° spiral with @ = 4=/3a . As always when working with planar spiral order, the
analysis is greatly simplified by using a rotating orthonormal basis in which the quantization
axis at every site points in the same direction as the average spin density of eq. (2). In this
rotating frame, the single-particle Green’s function G,4({, j; 7} = —{Te, (= )cﬁ{ﬂ}} becomes,
in matrix notation, G(, j; iw,) = T{ G, j; iw,) T;, where the rotation matrix in spin space
T;=exp[—i(@-R;) =" /2] depends on the site i. In this reference frame, the Green's function
matrix 7 has the full underlying lattice periodicity, even for incommensurate spiral order. In
the Hartree-Fock approximation, we find

A, (k)2 A_(k)/2
Gk, iw,) = L s e hali : (3)
oy, + 0 — 8, (k) te, +— E_ (k)

('} Coupling between the transverse spin excitations and charge exeitations has been found in the
metallic state of incommensurate spival SDW states on the square lattice by John et al. [5].
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where
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with the definitions £, (k) = — (1/N) Z t;; cosk - (R; — R;) for the single-particle dispersion in
the paramagnetic phase (N is the number of sites), and

( e (RY—e_(K
e =l = Q/2), = =B
3 g{k}s__—-—3+':k}+°"{k}+£, A= US, (4)
2 2
| B(k) =\ n? (k) + 4%, E. (k) = k) + E(k).

The gap equation is given by the self-consistency requirement

[FE_ (k) - AE, (k)]
e Z =i (5)

Eik)

where fix) is the Fermi function and the wave vector k spans the entire paramagnetic
Brillouin zone of the crystal
Proceeding to the collective exeitations in the ordered state, we define the matrix

response function
(1, §; )= — (T8*(i; 7)87(5; 00} + (S*(ONS" (TN.

y is obtained in the GRPA by the usual summation of bubble and ladder diagrams. In the
rotating frame where »*(i,j; 7) — ¥* (i —j; ), the matrix GRPA equation takes the
form (%)

g, i0,) = 7"(g, i) + 2U% (g, i2,) 'x(g, ild,), (6)

where I'is a diagonal matrix with '® = 1,I'** = ' = ['* = — 1, The density response in ¥ is
related to the laboratory response y by (see (%)) ¥¥(g, ¢', @ +i3) = 3% (g, w + 18) &g o . The
poles of ¥ coincide with those of y, giving the position of the collective modes.

At T =0K, which we will consider from now on, the retarded zeroth-order matrix

*) Details of the derivation will be given elsewhere.
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susceptibility ¥"(g, @ + i2) is given by
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where unprimed functions are to be evaluated at k& +¢/2 and the primed functions at
k—qf2 and where A, =y_zxy, with y.=1/(w+id—(c =) = (E + E')).

For hypereubic lattices in arbitrary dimension larger than one, symmetry arguments can
be used to show that whatever the hopping matrix ¢;; and the value of U, as long as there is
long-range collinear antiferromagnetic order, the response matrix 7 is block diagonal. There
are then two Goldstone modes with purely transverse (x, y)-character. This is also the case
for next-nearest-neighbor hopping on the square lattice where the resulting spin Hamiltonian
is frustrated in the large-U7 limit.

From now on, we restrict ourselves to the nearest-neighbor triangular lattice at
half-filling. At half-filling, as {7 is increased, the Hartree-Fock ground state evolves through
a sequence of phase transitions to a SDW insulator with a three-sublattice 120° twist between
spins on neighboring sites [2]. This spiral 3DW state is the well-known ground state of the
Heisenberg model with J —~ 4¢ /I7[7].

We go beyond previous studies by accounting for the eollective excitations of the 120°
spiral SDW phase. The electronic dispersion in the ahsenee of interaetion for the
nearest-neighbor model on the triangular lattice iz given hy =z4(k) = — 2#(cos(k, a) +
+ 2 eos(k, af2) c{}s(ﬁky a/2)). In the paramagnetic Brillouin zone, the single band &, (k) is
split into the two subbands B, (k) by the presence of spiral order, as ean be seen from
eqa. (3}, (4). The direct single-particle energy gap is 24 but the indirect gap can be lower than
thiz value. In the following, we restrict ourselves to the regime at half-filling where the
indirect gap is positive and the 120° spiral SDW is the ground state. (Collective modes
destabilize the spiral phase at t/I7 = 0.146 (see ()).)

Expanding %" (g, ) to second order in «/U, {/U, and using the gap equation to eliminate
& iz favor of U, we find that the poles of ¥(g, «) correctly reproduce the spin wave result with
J = 4t* /17 [8] for the three Goldstone modes alg), w(g + @), wig — @), of the triangular
lattice. As the ratio /U7 inereases and the electrons become more itinerant, higher-order
terms in {/I7 cannot be neglected and the coupling between charge and spin ecomponents
becomes important. The matrix 3{g, «) is no longer block diagonal and all response functions
then share the same poles, although with different weights. As in the Heisenberg limit, there
are still three Goldstone modes with a vanishing frequency at ¢ = 0 in the magnetic Brillouin
zome. In fig. 1a) we plot the imaginary part of the response functions %% and %™ for various
values of ¢. It is clear from the intensities in fig. 1a) that the coupling between spin and
charge is very small. The intensity of this coupling increases with ¢/U.

Beecause the three Goldstone modes extend to zero frequency and now have charge as well
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Fig. 1. - o) Imaginary part of the density and (inset) spin response funetions at £/ = 0.1, From left to
right the peaks correspond to g, =0, g, = 0.1, 0.15, 0.25 (in units of 2x/a). b) Real part of the
eonductivity at t/U7 = 0.1 for g, = 0; g, = 0.1, 0.15, 0.25 represented by the full, dashed and dot-dashed
curves, respectively.

as spin character, it is natural to ask whether the system could become conducting despite
the existence of a gap in the single-particle excitations. The appropriate definition of an
insulator is that the coefficient (the Drude weight [3,4]) of the delta-function &(w) in the
zero-temperature d.e. conductivity =, = lim 11m 7w, g) vanishes. We obtained this
quantity from the appropriate limit of 7" ¢"

w + 18
ales, q) = ? 7w + 13, 4, q). (8)

In this expression, one has to take the part of x*(w + id, ¢, ¢) = %% (w + i3, g} which is
irreducible with respeet to the interaction. This accounts for the effeet of sereening.
Expanding to second order in g, w, we found after lengthy algebra that the charge response
function decreases faster than g° for ¢ — 0 so0 that the Goldstone-mode contribution to o(w, q)
has effectively zero weight at g — 0. The same conclusion is reached by caleulating the
transverse eurrent-current response funetion in the GRPA. It then follows that the system
remains insulating even though there is no gap in the charge response funetion. This is not so
surprising sinee at ¢ = 0 the Goldstone modes restore rotational invariance: hence they have
the same parity as the ground state so that matrix elements of the current operator between
the g = 0 modes and the pround state vanish. At finite wave vector and frequeney, however,
the conductivity is finite and, as shown in fig. 1b), the absorption deseribed by the real part is
exactly at the Goldstone-mode position, as expeeted.

In conclusion, the triangular three-sublattice antiferromagnet deseribed by the large-I7
half-filled one-hand Hubbard model provides an example of a gapless Mott insulator. In this
system, the Goldstone modes aequire mixed spin and charge character at finite t/U, leading
to the disappearance of the gap in the conduetivity, despite a vanishing d.c. conductivity and
the existence of a gap in the single-particle excitations. This phenomenon is generie for
itinerant magnets with spiral order. An exception is when the ordering wave vector
corresponds to collinear antiferromagnets.
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