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Strong correlations in low dimensional conductors.

What are they, and where are the challenges?
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Université de Sherbrooke, Sherbrooke,
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This paper is written as a brief introduction for beginning graduate students. The picture of electron
waves moving in a cristalline potential and interacting weakly with each other and with cristalline
vibrations suffices to explain the properties of technologically important materials such as semicon-
ductors and also simple metals that become superconductors. In magnetic materials, the relevant
picture is that of electrons that are completely localized, spin being left as the only relevant degree
of freedom. A number of recently discovered materials with unusual properties do not fit in any
of these two limiting cases. These challenging materials are generally very anisotropic, either quasi
one-dimensional or quasi two-dimensional, and in addition their electrons interact strongly but not
enough to be completely localized. High temperature superconductors and certain organic conduc-
tors fall in the latter category. This paper discusses how the effect of low dimension leads to new
paradigms in the one-dimensional case (Luttinger liquids, spin-charge separation), and indicates
some of the attempts that are being undertaken to develop, concurrently, new methodology and
new concepts for the quasi-two-dimensional case, especially relevant to high-temperature supercon-
ductors.

I. INTRODUCTION

Quantum mechanics and statistical mechanics have
provided us with the tools to understand the behavior
of bulk matter. Nevertheless, except in the case where
particles are independent, the problem of treating 1023

electrons is unmanageable by brute force application of
the basic laws. A few concepts, and their mathemati-
cal implementation, were needed to enable us to develop
both the qualitative and highly quantitative theories that
nowadays explain the electronic and magnetic properties
of solids. The computer revolution is in part the out-
come of this understanding and of the massive experi-
mental effort devoted to controlling semiconducting and
magnetic materials, which are the basic elements of tran-
sistors, magnetic storage materials and other pieces of
basic hardware.

What is there left to do then? All these successes may
seem to indicate that we have the tools to understand
the electronic and magnetic properties of any piece of
solid matter. This is not so. This short overview, writ-
ten primarily for the student with a first course in Solid
State Physics, will summarize the traditional views of
Solid State systems and move on to show how these
views fail in a large class of materials. As we will see,
high-temperature superconductors are one of the most
famous examples of materials begging for understand-
ing. But there are others. And the mysteries lay not
only in the origins of the superconductivity itself, but
also in normal state properties that one would have ex-
pected traditional Solid State Physics to explain. In fact,
the failures of present day Solid State theory provide an
intellectual challenge of the highest level. The Physics

of strong electron-electron interactions and of systems in
low-dimensional spaces (one or two dimensions) is what is
at stake. New concepts have already emerged. For exam-
ple, we know now that in one dimension, single-electron
momentum states are very bad representations of the true
eigenstates, which are, instead, collective charge and spin
excitations. In other words, in a one-dimensional solid,
the electron splits into its spin and its charge degrees of
freedom. This concept of spin-charge separation is only
one example of the kind of new ideas, and correspond-
ing tools that need to be developed. The close interplay
between experimental facts and the developement of new
qualitative ideas, as well as the occasional need for heavy
mathematical and numerical artillery, are characteristics
of the field that we also wish to illustrate.

Although there is a vast number of topics in strongly
correlated electron Physics, some of which have already
led to Nobel Prizes, we will concentrate on those topics
that we have worked on and that are closely related to the
high-temperature superconductors, the subject of this is-
sue of Physics in Canada. We first recall the standard
approaches, show experimental results that are unexpli-
cable within these schemes, briefly give general theoreti-
cal arguments that tell us why the standard approaches
are expected to fail in these cases and conclude with re-
marks on theoretical models and new methods that are
being developed. In a nutshell, it should be clear at the
end of this review that “Strongly Correlated electrons”
refers to a rather broad class of problems originating basi-
cally from either strong interactions or singular scattering
processes in low dimension.
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FIG. 1. Band structure of La2CuO4, taken from Ref. [1]

II. THE STANDARD APPROACHES:
QUASIPARTICLES AND LOCALIZED SPINS

The groundwork for successful theories of the elec-
tronic and magnetic properties of solids began in the
early days of quantum mechanics. Bloch’s theorem ex-
plained why single-electron eigenstates in periodic arrays
are plane-wave like and can be described by a wavevector
and an other quantum number, called the band index. In
the case of magnetic insulators, the so-called Heisenberg
model described the interactions of localized electrons
interacting with each other through their spin degrees
of freedom. These two dramatically opposite points of
view, of delocalized vs localized electrons, have been use-
fully developed and applied to different types of mate-
rials. The present section illustrates the main concepts
that have emerged.

A. Quasiparticles, the Fermi surface and Fermi
liquid theory

A mean-field (i.e. average) treatment of interactions
leads to a picture where the many-electron wavefunc-
tion is simply an antisymmetrized product (because of
Fermi statistics) of one-particle eigentates of the type
described by Bloch. The best available method to ob-
tain these one-particle eigenstates today is the local den-
sity approximation (LDA), a method based on “density
functional theory”. The 1998 Nobel Prize in Chemistry
was awarded for the development of the latter approach
[4]. Fig. 1 gives the single-particle eigenenergies result-
ing from a LDA calculation for a compound in the high-
temperature superconductor family, La2CuO4. The hor-
izontal axis represents wavevector along different direc-
tions and the different curves for the same wavevectors
represent the bands. The zero-temperature many-body
state is built by filling-in the lowest energy states, follow-

ing the constraints of the Pauli principle, until all elec-
trons are accounted for. Hence, one would expect that
one can draw a surface, in wavevector space, that sep-
arates filled from unfilled states. That is the so-called
Fermi surface. When bands are either completely filled
or completely empty, one has an insulator (or a semicon-
ductor when the energy gap between the highest filled
band and the lowest empty band is not too large). Oth-
erwise, there are zero-energy excitations and the system
conducts. Given that the last filled level in a metal lies
in a band that spreads over a few eV in energy, room
temperature (1/40eV) corresponds to energies that are
minuscule on that scale and hence often beyond the pre-
cision of LDA calculations. Nevertheless, these small en-
ergies are often large enough to play an essential role in
the observable properties of the system.

Suppose we put back the interaction, i.e. we compute
matrix elements of the full Hamiltonian in the basis ob-
tained from the LDA calculation. The Hamiltonian in
that basis contains residual interactions between quasi-
particles. Even if we cannot in practice carry out this
program, the general form of the Hamiltonian is pretty
clear on the basis of general considerations and on sym-
metry arguments. The residual interactions should be
short-range since the LDA bands have taken screening
into account for the most part. Furthermore, a wavefunc-
tion made of a single antisymmetrized product of states
is not an eigenstate of the Hamiltonian that includes in-
teractions. In a physical picture, particles scatter off each
other, changing momentum and band quantum num-
bers. However, the Pauli principle strongly constrains
phase space for final states. In fact, it can be proven
to all orders in perturbation theory (assuming that it
converges, which is not the case in one dimension or for
strong interactions) that even in the presence of electron-
electron interactions, the single-particle excitations near
the Fermi surface are well described by a single-particle
picture. These excitations are called quasiparticles. This
is the first step in the so-called Landau Fermi liquid the-
ory of metals. However complicated the band structure,
the arguments given above suggest that for low-energy
fermionic excitations, only the band near the Fermi sur-
face is relevant, giving a conceptual framework to un-
derstand wide classes of materials. What will change
from one material to the other is the effective mass of
the excitations, or more generally, details of their energy
dispersion, but the qualitative picture is quite universal.

Nowadays, one can see the quasiparticles experimen-
tally in a rather direct manner. Indeed, synchrotron
radiation has given us X-ray sources that are power-
ful enough to do Angle Resolved Photoemission Spec-
troscopy (ARPES). In these experiments, it is possible
not only to measure the energy of the outgoing electron,
it is also possible to resolve its momentum parallel to
the surface, which is conserved when the electron is ex-
tracted by the X-ray from the material. For a system
where energy eigenstates have a strong two-dimensional
nature, that is all the quantum numbers that we need.
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FIG. 2. ARPES spectra of 1−T −TiTe2, taken from Fig. 1
of Ref. [2]

Fig. 2 presents the results for a compound that behaves
as expected from the quasiparticle picture. The different
curves correspond to different momenta. They give on
the vertical axis a quantity proportional to the proba-
bility, times a Fermi function, that an electron of given
momentum has the energy indicated on the horizontal
axis. As one moves in the various directions of wavevector
space, one reaches a point where the maximum intensity
is very near zero energy (14.750 on the figure). The effect
of the Fermi function is that for a probability that would
be maximum at zero energy, the observed maximum is
slightly below zero energy. At zero energy, the observed
function is smaller than the value it would have had but
it still has sizeable weight. In this way, one can thus
map the wavevectors where there are no-longer electrons
to photoexcite. This is the Fermi surface (Fermi line in
d = 2). If there were no interaction between electrons,
there would be only one energy allowed for a given mo-
mentum state. Clearly, here the probability for a given
momentum is centered at a wave-vector-dependent po-
sition but it is nonvanishing for several energies. The
width in energy for a given momentum cannot be ac-
counted for simply by experimental resolution. Its exis-
tence is expected from the fact that quasiparticles have
a lifetime. One can also check from the figure that the
width in energy is becoming narrower as one approaches
the Fermi surface. Also, although this is not shown here,
at the Fermi surface the width decreases rapidly with
temperature (like T 2).

B. Thermodynamics of the Fermi liquid, and phase
transitions

So much for single-particle properties. What happens
when one measures thermodynamic quantities such as
the magnetic susceptibility or the specific heat? One is
not adding or removing new particles in the system. The
external probe is just emptying occupied states while fill-
ing unoccupied states: It is creating particle-hole excita-
tions. In that case, Landau Fermi liquid theory predicts
that the interactions have a mean-field-like effect that
modifies the predictions one would obtain for noninter-
acting particles. For example, the specific heat is linear
in temperature and proportional to the density of single-
particle excitations, like in a free electron gas. The spin
susceptibility should then be temperature independent,
like the Pauli susceptibility of free electrons, and, in a
naive picure, it should also be proportional to the den-
sity of single-particle excitations. In reality, Fermi liq-
uid theory tells us that there is an enhancement factor
(1 + F a0 )−1 , where F a0 is a measure of the interaction.

Interactions, quite generally, are the cause of phase
transitions. The case F a0 = −1 above corresponds to
(1 + F a0 )−1 = ∞, which means a divergent static spin
susceptibility. That is a clear signal for the onset of fer-
romagnetism. The ferromagnetic state breaks spin ro-
tational invariance. Another example of phase transi-
tion caused by interactions, is the superconducting tran-
sition, which breaks global gauge invariance. This is dis-
cussed further by J. Carbotte in this issue. The origin
of the interactions leading to phase transitions may be
quite subtle. For example, in the case of conventional
superconductors, the retarded electron-phonon interac-
tion leads to an effective attraction between quasiparti-
cles that is ultimately responsible for the superconduct-
ing state. Finding and characterizing all possible states
of matter caused by interactions is a field of endeavour
in itself.

C. What about the Heisenberg model?

While band theory works well with most materials with
only s and p derived bands, in certain cases, mostly with
d and f electron materials, it is totally inappropriate.
One of the most famous examples is V2O3. The band
structure predicts it should be a metal. Instead, at low
pressure and low temperature it is an antiferromagnetic
insulator. In other words, electrons do not move (that
defines the insulator) unless they are kicked really hard,
and spins, on the other hand, order in an up-down pat-
tern on alternating sites (that is called an antiferromag-
net). As we shall discuss more later, this failure of band
theory comes from the fact that interactions in these ma-
terials are larger than kinetic energy effects, leading to a
breakdown of perturbation theory. In the jargon, this is a
“strong coupling” effect. Despite the difficulties of deriv-
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FIG. 3. Electrical resistivity as function of temperature for
two members of the (TMTTF)2X series. Inset: Tempera-
ture-dependent spin susceptibility, from Ref. [5].

ing from first principles the Hamiltonian in the reduced
Hilbert space involving only spin degrees of freedom of
the last filled states, again one can use general symmetry
principles to write down model Hamiltonians. Solving
these is a non-trivial task that has been successfully ac-
complished by many people for many years in the field
of magnetism. Numerous neutron scattering experiments
have verified in details the predictions of these models in
many cases.

III. EXPERIMENTAL EVIDENCE FOR
FAILURES OF STANDARD SOLID STATE

THEORY IN LOW-DIMENSIONAL
CONDUCTORS.

What do we mean by low dimensional conductors? In
practice they can be formed, for example, by organic
molecules stacked onto each other, or by copper oxy-
gen planes separated by ions, as in the case of high-
temperature superconductors. Despite the horrendous
complexity of these structures, the Pauli principle and
the general arguments given above tell us that for low-
energy Physics we can concentrate only on the LDA
bands that are very close to the Fermi energy. It turns
out that, in many realizable cases, there is only one such
band. Furthermore, the eigenstates in that band may
turn out to be very different depending on which axis one
is looking from. In these very anisotropic cases, it is as if
electrons moved preferentially in one or two dimensions,
the latter being the case for the high-temperature super-
conductors. Let us see what non-Fermi liquid Physics
can arise in the d = 1 and d = 2 cases.

FIG. 4. Temperature dependence of (T1T )−1 (×) and T−1
1

(◦) for TTF[Ni(dmit)2]2. The continuous line corresponds to
the Luttinger liquid prediction, from Ref. [7].

A. One dimension: spin-charge separation in the
organics

When electrons of opposite momentum are confined
to move in one spatial direction, they cannot avoid each
other and their interaction will be in some way enhanced
in comparison with isotropic systems. As we will explain
in the theory section, quasiparticles are absent in one
dimension, and one has instead a Luttinger liquid where
harmonic collective oscillations of both spin and charge
are the true elementary excitations.

Here we present two clear experimental examples of the
failure of the quasiparticle picture. Consider the normal
phase of the (TMTTF)2X series of quasi-one-dimensional
organic conductors (here, TMTTF stands for the tetram-
ethylfulvalene molecule and X= PF6, Br, ..., for an inor-
ganic monovalent anion) [5]. As shown in Fig. 3, there
ia a clear upturn in electrical resistivity at temperature
Tρ, which depicts a change from metallic to insulating
behavior. Below Tρ, charge carriers become thermally
activated. In a band picture of insulators, the same ther-
mally activated behavior should be present for spins since
the only way to create spins in a band insulator is to ex-
cite quasiparticles across the gap between the filled and
the empty bands. For the compounds shown in Fig. 3,
spin excitations instead are unaffected and remain gap-
less. This is shown by the regular temperature depen-
dence of the spin susceptibility χs at Tρ (inset of Fig. 3).

Among other experimental tools that are quite useful
in probing signs of unusual behavior in low-dimensional
organic conductors is Nuclear Magnetic Resonance, es-
pecially the temperature dependence of the nuclear spin-
lattice relaxation rate, denoted as T−1

1 . Nuclear and elec-
tronic spins being coupled through the hyperfine interac-
tion, the measurement of T−1

1 can give valuable informa-
tion about electronic spin excitations. While (T1T )−1 is
temperature-independent in a Fermi liquid, the correct
theory in one dimension for (T1T )−1 takes the form [6]:
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(T1T )−1 = C1T
Kρ−1 +C0χ

2
s(T ), (1)

where the exponent Kρ ≥ 0 stands for the ‘stiffness’
constant of collective charge degrees of freedom. It
gives rise to a power-law enhancement of (T1T )−1, which
comes from antiferromagnetic spin correlations. For
one-dimensional insulating compounds like (TMTTF)2X,
charge degrees of freedom are frozen so that Kρ = 0. The
resulting behavior T−1

1 ∼ C1 +C0χ
2
s turns out to be in-

variably found in all these insulating materials down to
low temperature, where three-dimensional magnetic or
lattice long-range order is stabilized [6]. Among the very
few quasi-one-dimensional organic materials that do not
show long-range ordering, the case of TTF[Ni(dmit)2]2
is interesting [7]: This system remains metallic down
to very low temperature and a power law enhancement
(Kρ ≈ 0.3) of (T1T )−1 is maintained from 300K down to
1K or so (Figure 4).

B. Two dimensions: The pseudogap.

We have already shown the band structure of La2CuO4

in Fig. 1. The last occupied band is essentially a lin-
ear combination of copper and oxygen orbitals corre-
sponding to two-dimensional (planar) arrangements of
CuO2 atoms. Thus, one expects that electrons relevant
for transport are essentially confined to two dimensions.
This is confirmed by the highly anisotropic transport
properties of these materials, as discussed by T. Timusk
in this issue. The Fermi level crosses the last occupied
band, so we expect a metal.

But in reality, La2CuO4 is an antiferromagnetic in-
sulator! This is because of strong interactions. When
La3+ cations located away for the conducting planes are
replaced by Sr2+ cations, electrons are removed from
the CuO2 planes and La2−xSrxCuO4 becomes eventually
a high-temperature superconductor. The generic phase
diagram for high-temperature superconductors appears
elsewhere in this issue. There are many high-temperature
superconductors, and they all have in common CuO2

planes that can be doped. The physical properties of
these planes are quite similar from one compound to the
next. From being antiferromagnetic when there is one
electron per CuO2 unit, they become superconductors
when doped with holes (or with electrons in certain com-
pounds). With hole doping, the superconducting Tc first
increases. That is called the underdoped region. Then, a
maximum Tc is reached at “optimal doping”, decreasing
thereafter in the “overdoped” region.

Let us look at the underdoped regime, above Tc. To
see if the standard Fermi-liquid approach applies in this
regime, we resort to ARPES. It is experimentally diffi-
cult to do ARPES in La2−xSrxCuO4, so we use results
obtained from the CuO2 planes of the so-called Bi2212
high-temperature superconductor. In Fig. 5(a), the solid
line shows the location of the Fermi line expected from
band structure calculations. Fig. 5(b), illustrates the

FIG. 5. ARPES spectra of O2-reduced Bi2Sr2CaCu2O8+δ,
taken from Ref. [3]

ARPES spectrum obtained for various wavevectors along
the (0, 0) to (π, π) direction. At the wave-vector loca-
tion expected from band structure, one finds the prop-
erties expected for a state at the Fermi surface, namely
at zero energy the photoemission intensity is a sizeable
portion of the value at the peak position. The surprise
arises when one looks along the (π, 0) to (π, π) direction,
Fig 5(c). None of the photoemission curves has the fea-
tures expected from a state at the Fermi surface. It is as
if the Fermi line had disappeared. This is the co-called
pseudogap phenomenon. It is as if an energy gap had
opened on part of what should have been the Fermi line
(hence the “pseudo” prefix, since zero-energy excitations
are left elsewhere in wave-vector space). If you think
about it from a quasiparticle picture, this is completely
crazy. Take an energy band in a two-dimensional system.
The allowed wavevectors cover a finite region of the two-
dimensional kx, ky plane. That is the Brillouin zone. Plot
the energy corresponding to a given wavevector in the z
direction. That gives a singly connected surface. Now,
cut this surface by a plane parallel to the kx, ky plane.
The intersection of that plane with the energy surface
can only be of two types. Either it is a line that links
one edge of the Brillouin zone to another (or the same)
edge, or it is a closed line inside the zone. The two possi-
bilities can exist at the same time: In other words, there
may be several Fermi lines in the Brillouin zone. But ac-
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cording to these simple geometrical considerations, there
is no other possibility. If you cover the Brillouin zone
with ARPES measurements, you find that in the under-
doped high-temperature superconductors the Fermi line
does something worse than disagreeing with band struc-
ture calculations. It disappears in thin air! That is a total
no-no in both standard approaches. Remember that in
the standard approaches, either you have quasiparticles
and there is a Fermi line, or you have an insulator and
there is no single-particle state at all at zero energy.

Other manifestations of the pseudogap, expecially in
transport, are discussed elsewhere in this issue.

IV. WHY DO THE STANDARD APPROACHES
FAIL?

The failure of the standard approaches in low dimen-
sion is not a total surprise from a theoretical standpoint.
On the contrary, for a long time there have been pa-
pers discussing the peculiarities of low-dimensional sys-
tems. For example, consider the Mermin-Wagner theo-
rem, which states that a spontaneous breaking of a con-
tinuous symmetry (e.g. a rotation) cannot occur in low
dimension.

To be more specific on what that means, let us give
an example. In three dimensions, Heisenberg antiferro-
magnets exist at finite temperature. In two dimensions,
thermal fluctuations forbid such order from occuring at
finite temperature. A rough argument for that is as fol-
lows. At long wavelengths, the energy associated with a
change in the relative angle between neighboring spins,
θ, will be proportional to (∇θ)2

, or q2θqθ−q in Fourier
space. The mean square of the local angle is given by
the integral over all wavevectors of 〈θqθ−q〉 . Using the
classical fluctuation-dissipation theorem, this means that〈
θ2
〉
∝
∫
ddq (kBT/q2). That integral diverges loga-

rithmically in two dimensions, which proves ad absur-
dum that long-range order cannot exist. At zero temper-
ature, the above argument fails and antiferromagnetic
long-range order may exist. In one-dimension, quantum
fluctuations have a similar detrimental effect and, even at
zero temperature, antiferromagnetic or superconducting
long-range order does not exist.

All this classical and quantum fluctuation business is
bad news for the quasiparticle approach. Indeed, even
though long-range order does not set in, below a temper-
ature of the order of what would have been the mean-field
transition temperature, there are collective modes that
spread over large distances, making the material appear
ordered over large scales. This strongly scatters quasi-
particles, and in some instances it may lead to short life-
times, or even to pseudogap phenomena [11].

So much for doing all at once. Let us consider first the
effects of low-dimension in weak to intermediate coupling,
and after that the effects of strong interactions. In weak
to intermediate coupling, things behave very differently

according to dimension. Dimension still plays a role in
strong coupling, but some strong-coupling effects depend
little on spatial dimension.

A. The effects of low dimension in weak to
intermediate coupling

1. One dimension

General considerations on phase space and the Pauli
principle tell us that in high dimension, the scattering
rate of quasiparticles at the Fermi surface is proportional
to (T/EF )2 . Since the relative width of the Fermi func-
tion is of order T/EF , it makes sense to expect that ther-
modynamic properties will not much be influenced by the
(T/EF )2 � T/EF width of the quasiparticles. In one
dimension, this argument fails. The width in perturba-
tion theory is proportional to T , like the Fermi function.
Right from the start, this invalidates the Fermi-liquid
starting point. In addition, response functions diverge as
lnT at low temperature. More specifically, what makes
one dimension so special lies in the shape of the Fermi
surface, which consists of two points (±kF ). Electron
and hole states that are created by electron-electron scat-
tering close to ±kF lead to elementary superconducting
(Cooper) and density-wave (2kF electron-hole) pairings;
these are not only singularly enhanced at low tempera-
ture, but their confinement in k−space produces strong
interferences between them that persist to all orders in
perturbation theory. A striking outcome of this inter-
ference is an instability of the Fermi liquid towards the
formation of a quite different quantum state called a Lut-
tinger liquid.

The point of view has to change completely. The ap-
propriate theoretical tools here bear the name of renor-
malization group [19] or bosonization [8]. They lead to
the same final picture: It is best to consider spin and
charge collective modes as the elementary excitations.
In the resulting “Luttinger liquid” picture [9], which re-
places the Fermi liquid as a general limiting case in one
dimension, the spin and the charge of would-be quasi-
particles separate, becoming the true elementary excita-
tions that propagate at different velocities. We have illus-
trated experimental manifestations of this phenomenon
in organic conductors in the previous section. The cases
where the compounds were insulators displayed extreme
examples of spin-charge separation. These compounds
have a commensurate band filling and their insulating
behavior is a manifestation of one-dimensional Mott lo-
calisation, a more general topic on which we return in
the discussion on the effects of strong interactions.
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2. Two dimensions

Contrary to the one-dimensional case, the quasipar-
ticle picture does not fail automatically in two dimen-
sions. For example, the compound in Figure 2 is a
two-dimensional Fermi liquid. Theoretically, in two di-
mensions there are only weak logarithmic corrections to
the standard phase space arguments of Fermi liquid the-
ory. Stronger corrections occur when the Fermi surface
has so-called nesting properties [10], or when one enters
a fluctuation regime. Let us consider the latter case.
The fluctuation regime may occur over a broad temper-
ature range in two dimensions, basically from a temper-
ature of the order of the mean-field transition temper-
ature, all the way to zero temperature. Let ξ be the
length over which the collective mode fluctuations are
correlated. In the fluctuation regime, the scattering rate
for quasiparticles at the Fermi surface is proportional to
T
vF

∫
dd−1q

(
q2 + ξ−2

)−1 ∝ Tξ3−d/vF . In d = 2, this be-
comes ξ/ξth, where ξth ≡ h̄vF/kBT is the thermal de
Broglie wavelength. Since the correlation length ξ di-
verges much faster as T → 0 than ξth, this implies a di-
vergent scattering rate. It is difficult to have a stronger
contradiction of the quasiparticle picture. Physically,
when the correlation length ξ becomes much larger than
the thermal de Broglie wavelength, the quasiparticles are
moving in a locally ordered background. Then a pseu-
dogap, precursor of the T = 0 ordered state, opens up
at the Fermi surface [11]. As temperature decreases, it
may open on certain segments of the Fermi surface be-
fore it opens on other segments. That is a consequence of
the fact that the scattering rate, proportional to Tξ/vF ,
may be very different on different parts of the Fermi sur-
face. Close to half-filling in particular, the Fermi veloc-
ity nearly vanishes at certain points of the Fermi surface
while it is large at other points.

B. The effects of very strong interactions

When interactions are very strong, electrons avoid get-
ting close to each other by localizing. When an odd num-
ber of electrons is localized on each atom, the charge does
not move and the only degree of freedom left at low en-
ergy is essentially the spin. Note the contrast with the
quasiparticle picture where a half-filled band is a metal.
The low energy Physics in these system, where electrons
are localized by interactions, is then essentially governed
by variations of the Heisenberg Hamiltonian described
above. Many years ago, Mott imagined what would hap-
pen to a system as the strength of the interaction is
increased. The transition from extended quasiparticle
states to localized states produced by large interaction ef-
fects is refered to as the Mott transition. It is a first order
transition whose Physics has become better understood
in recent years [12], thanks to the developement of cal-
culational methods in the limit of infinite dimension [13].
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FIG. 6. Schematic phase diagram of the quasi-2D organic
compound κ-(ET)2Cu[N(CN)2]Cl, from Ref. [16]

In the Mott insulator, many properties are not strongly
dependent on dimension, in particular when they concern
high energy. That is why infinite-dimensional methods
have been useful. Nevertheless, precursor effects caused
by collective mode fluctuations have been seen in models
of Mott insulators in low dimensions [14]. These effects
do not occur in infinite dimension.

The Mott transition does not break any symmetry,
and it may occur in any dimension. For example, V2O3

may exhibit such a transition, although questions regard-
ing the effects of lattice symmetry change and of orbital
degeneracies are still open [15]. A clearer example of
a Mott transition has been discovered recently in two-
dimensional organic conductors [16]. The phase diagram
is illustrated on Fig. 6. The system is half-filled. The
horizontal axis represents pressure. From a model point
of view, increased pressure means larger overlap between
atomic orbitals and hence increased kinetic energy. In-
deed, at low pressure on this diagram, the system is either
a paramagnetic insulator at high temperature, or an an-
tiferromagnetic insulator at low temperature. At higher
pressure, one crosses a first order transition that leads
to a metallic state at high temperature and to a d-wave
superconductor at low temperature.

C. And high-temperature superconductors in all
that?

The high-temperature superconductors are Mott insu-
lators at half-filling. Doping eventually leads to a d-wave
superconducting state. Their electronic properties are
also highly two-dimensional, in particular in the under-
doped region. They thus manifest all the complexities
described above. The high energy (100 meV) pseudo-
gap described in Section III B above, is likely to be a
strong-coupling pseudogap, in other words a pseudogap
originating from the Physics of doped Mott insulators.
However, closer to the superconducting phase transition,
in the more metallic regime, one expects a fluctuation-
induced pseudogap. Indeed, in photoemission, one can
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often identify a lower energy pseudogap that seems to
occur in a fluctuation regime. A more detailed discus-
sion appears in Ref. [17].

V. THEORETICAL METHODS AND
CHALLENGES

One of the most widely studied model Hamiltonians
of correlated electrons is the so-called one-band Hubbard
Hamiltonian:

H = −
∑
<ij>σ

ti,j
(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ . (2)

In this expression, the operator ciσ destroys an electron
of spin σ at site i. Its adjoint c†iσ creates an electron and
the number operator is defined by niσ = c†iσciσ. The sym-
metric hopping matrix ti,j determines the band structure,
which here can be arbitrary. Occupation of a site by both
a spin up and a spin down electron costs an energy U due
to the screened Coulomb interaction. This Hamiltonian
is clearly a caricature of reality, but what is important
is that it has a minimal number of parameters and it al-
lows one to describe the two limiting cases of delocalized
and localized electrons, as well as the Mott transition be-
tween these two limits. Consider the case where the band
is characterized by a single parameter t representing hop-
ping between neighboring sites. At weak coupling, when
U/t � 1, one can apply the standard quasiparticle ap-
proach. At strong coupling, when U/t � 1, one can
show how this Hamiltonian becomes, at low energy and
half-filling, the Heisenberg Hamiltonian for spins. Hence,
it is a good starting point in both the strong and weak
coupling limits as well as in the intermediate coupling
regime, characteristic of high-temperature superconduc-
tors, where neither of the two standard approaches work.
At half-filling, the high-temperature superconductors be-
come antiferromagnetic insulators that are well described
by the Heisenberg model. At low energy and away from
half-filling, the Hubbard model becomes a variant of the
so-called t− J model, widely studied also in the context
of high-temperature superconductors.

It is hard to know from first principles if U/t will be
large or small for a given system. But there are heuristic
guides coming from Chemistry and from so-called “con-
strained LDA calculations”. In general, the Hubbard
Hamiltonian is an effective Hamiltonian. It is even use-
ful in some cases to let U < 0 to study models of s-wave
superconductivity. Despite the fact that the Hubbard
model was proposed almost 40 years ago, it is only re-
cently that it has become to be understood at interme-
diate coupling and in low dimension. Various methods
have been developped to study this model. In one di-
mension, an exact solution was found by Bethe Ansatz
[18], from which physical information is unfortunately
quite difficult to extract. The linear dispersion of the
one-dimensional electron gas in one dimension is at the

root of an analogy with relativistic field theories which
explains the success of field theoretic methods like the
renormalization group [19], bosonization [20] and Con-
formal Field Theory [20]. In two and more dimensions,
let us mention Slave-boson approaches [21], renormal-
ized perturbation theory approaches [22], strong-coupling
perturbation expansions [14] and the two-particle self-
consistent approach [11]. Finally, infinite-dimensional
methods have provided a dynamical mean-field theory
methodology [13] that has been very useful in under-
standing the Mott transition. This approach can also
be extended to lower dimensions. In d = 2 however, the
effect of antiferromagnetic fluctuations are not included
yet in this methodology, which limits somewhat the ap-
plicability of the method to high-temperature supercon-
ductors.

A major factor for progress is that it is now possi-
ble to do reliable numerical calculations that allow us
to both develop physical intuition and check the validity
of approximation methods. Exact diagonalizations are
possible in any dimension but are restricted to a small
number of electrons [23]. In one dimension, Density Ma-
trix Renormalization Group [24] has provided a revolu-
tionary method to obtain reliable results. In two dimen-
sions, Quantum Monte Carlo simulations [25] remain a
tool of choice. Such simulations have allowed us, for ex-
ample, to choose between various analytical approaches
that were giving different answers to the pseudogap ques-
tion in weak to intermediate coupling [17].

How can we understand electronic systems that show
both localized and propagating character? Why do both
organic and high-temperature superconductors show
broken-symmetry states where mean-field-like quasipar-
ticles seem to reappear? Why is the condensate fraction
in this case smaller than what would be expected from
the shape of the would-be Fermi surface in the normal
state? Are there new elementary excitations that could
summarize and explain in a simple way the anomalous
properties of these systems? Do quantum critical points
play an important role in the Physics of these systems?
Are there new types of broken symmetries? How do
we build a theoretical approach that can include both
strong-coupling and d = 2 fluctuation effects? What
is the origin of d-wave superconductivity in the high-
temperature superconductors? These are but a few of
the basic open questions left to answer in this field.
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blay, Phys. Rev. Lett. 80, 5389 (1998); also Eur. Phys.
J. B, to appear, cond-mat/9905242.

[15] M. Long, Newton Institute preprint, unpublished.
[16] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais,
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