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Nonperturbative approach to the attractive Hubbard model
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A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context
of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the
first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a number of crucial
sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle
self-consistency has been achieved. In the second step of the approximation, an improved expression for the
self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the
high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required
vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem
for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical conse-
quences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accom-
panying paper~following this one!.
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I. INTRODUCTION

In the mid to late 1950’s, quantum-field theoretical me
ods that had been developed first in the context of quan
electrodynamics, began to have widespread application
condensed-matter physics.1,2 One can, roughly speaking, dis
tinguish two types of approaches, the diagrammatic meth
of Feynman and the functional methods of the Schwin
school.3,4 Both points of view on many-body theory ar
equivalent. In particular, perturbation theory can be form
lated diagrammatically or with functional methods. The tw
approaches in fact complement each other. For example
calculating response functions, subsets of diagrams are o
summed to infinite order. But naive resummations will ge
erally break gauge invariance or other exact-symmetry pr
erties unless consistency between self-energy and
particle irreducible vertices is enforced following a techniq
whose most natural formulation employs function
derivatives.4,5

Diagrammatic methods have, nevertheless, become b
the most popular techniques for many-body6 problems in
condensed matter, but the quest for nonperturbative
proaches leads, in general, outside the realm of diagra
While the Hartree–Fock approximation has a diagramm
interpretation, what seems to be the most accurate appr
to the electron gas at metallic densities@local field approxi-
mation~LFA!7 # does not have a simple diagrammatic inte
pretation. In the case of the Hartree–Fock approximatio
variational principle guides the accuracy of the approxim
tion. In the LFA, it is a self-consistency requirement at t
two-particle level that controls the accuracy.

Nonperturbative approaches have been developed, in
ticular, for the Hubbard model,8 perhaps the best know
model for strongly interacting electrons on a lattice. Wh
the early Green function decoupling schemes have larg
fallen in disfavor because of theirad hocand uncontrolled
nature, many successful nonperturbative approaches
0163-1829/2001/64~7!/075115~14!/$20.00 64 0751
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been developed in one dimension. Recently, dynam
mean-field theory has become the method of choice9 for
higher dimensions. This method, however, is in fact based
an expansion about infinite dimension. In two dimensions
particular, the momentum dependence of the self-energy
not be neglected and this method becomes less accurat

The purpose of this paper is to extend to the attract
Hubbard model a nonperturbative approach developed pr
ously for the repulsive model.10–12 This method was an ex
tension of the LFA work of Singwiet al.7 for the electron gas
and of Hedeyati and Vignale for the Hubbard model.13 It
went further than this work in imposing the Pauli principle,
number of exact sum rules, of conservation laws, and p
posing a formula for the self-energy in the paramagne
state that includes momentum and frequency depende
The approach also includes an internal check on accu
based on an exact relationship between one- and two-par
properties. Although the method fails in strong coupling
very close to a critical point, it gives the most accurate
sults when compared with Monte Carlo simulations in t
weak-to intermediate coupling regime.12 The present pape
generalizes that approach to the attractive Hubbard mo
using a formal approach that lends itself more easily to v
ous future extensions. The accompanying paper14 demon-
strates accuracy by comparisons with Monte Carlo simu
tions, and discusses a problem of importance in the con
of high-temperature15 and organic16 superconductors
namely, the opening of a pairing-fluctuation induc
pseudogap.

The structure of this paper is as follows. In Sec. II w
introduce the general many-body formalism to obtain expr
sions for the self-energy and irreducible vertices in the fu
tional derivative approach. Although in principle standa
the functional derivative approach in the particle-partic
channel is not widely used. It allows us to establish a num
of exact results. At this level, all the results could have be
obtained with formal diagrammatic expansions in skele
©2001 The American Physical Society15-1
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diagrams, but we refrain from doing this since the functio
approach is far more economical in this context. The ex
results that we present form the basis of the two-part
self-consistent~TPSC! approach and its extension~Sec. III!.
These are nonperturbative approximations that are not
grammatic resummations. A discussion of the various ex
results that our approach satisfies either exactly or s
consistently is then presented in Sec. IV. Details of the d
vation of the exact results, namely, sum rules and hi
frequency expansions, are given in Appendix A. Appendix
compares our approach with various other approaches
explains the connection with the formalism for the repuls
Hubbard model. A summary of our main results is in Sec

II. EXACT RELATIONSHIPS BETWEEN GREEN
FUNCTION, SELF-ENERGY, AND VERTICES

In this section, we derive a number of exact results us
the functional derivative formalism. It is on the basis of the
results, and using again the functional derivative approa
that our approximation scheme will be developed in Sec.

A. Definitions, equations of motion

We work with creation-annihilation operatorsc↑
† ,c↓ for

Wannier states of spins5↑,↓, located at positionr1, and, in
the Heisenberg representation, imaginary timet1. The space
and imaginary time indices are abbreviated by arabic num
als. Furthermore, we use the Nambu representation,C†(1)
5(c↑

†(1),c↓(1)), where the field operators obey the an
commutation relations $Ca(1),Cb

†(2)%d(t12t2)5d(1
22)da,b . In this notation, the space part of Dirac delta fun
tions are Kroenecker deltas:d(122)5d r1 ,r2

d(t12t2).
When numerals are set in boldface, we mean just the sp
position @e.g., t(1,2)# and refer to the Schro¨dinger picture.
Adding the convention that indices with an overbar a
summed over space positions and, when appropriate,
grated over imaginary time from 0 tob, the Hubbard Hamil-
tonian takes the form

Ĥ52t~ 1̄,2̄!@cs̄
†
~ 1̄!cs̄~ 2̄!1cs̄

†
~ 2̄!cs̄~ 1̄!#

1Uc↑
†~ 1̄!c↑~ 1̄!c↓

†~ 1̄!c↓~ 1̄! ~1!

with t(1̄,2̄) the hopping matrix elements.
Since we will work in the grand-canonical ensemble, it

convenient to takeĤ2mN̂ as the time evolution operator i
the Heisenberg representation, withm the chemical potentia
and N̂ the number operator. The corresponding equation
motion for the field operators then are

F S ]

]t1
2m D d r1 ,r2

2̄t~1,2̄!Gd~t12t 2̄!cs~ 2̄!

52Uc2s
† ~1!c2s~1!cs~1!, ~2!
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F S ]

]t1
1m D d r1 ,r2

1̄t~1,2̄!Gd~t12t 2̄!cs
†~ 2̄!

5Uc2s
† ~1!c2s~1!cs

†~1!. ~3!

We will also need the momentum space representa
cs(1)5(1/AN)(ke

ik"r1ck,s and the pair operators

D~1!5c↑~1!c↓~1!; D†~1!5c↓
†~1!c↑

†~1! ~4!

with Fourier transformDq5(1/AN)(kck,↑c2k¿q,↓ . These
pair operators do not include the interaction potential in th
definition. The pair operators obey the equations of moti

]Dq

]t
5

21

AN
(

k
F«k1«2k¿q22S m2

U

2 D Gck,↑c2k¿q,↓ ,

~5!

]Dq
†

]t
5

1

AN
(

k
F«k1«2k¿q22S m2

U

2 D Gc2k¿q,↓
† ck,↑

† ,

~6!

where the band dispersion«k is the Fourier transform of the
hopping matrix elements2t(1,2)5(1/N)(ke

ik"(r12r2)«k .

B. Green function and self-energy

As in Ref. 3, we work in the grand-canonical ensemble
the presence of auxiliary source fields that are useful in
termediate steps of the calculations. The source fields are
to zero at the end. More specifically, we define the expe
tion value of a general time-ordered operatorO by

^Tt@O#&Q

[Z21~$Q%!Tr$e2b(Ĥ2mN̂)Tt@e2C†(1̄)Q(1̄,2̄)C(2̄)O#%,

~7!

with

Z~$Q%![Tr$e2b(Ĥ2mN̂)Tt@e2C†(1̄)Q(1̄,2̄)C(2̄)#%, ~8!

where Tt is the time-ordering operator while the matr
source field

Q~1,2!ÄS 0 u~1,2!

u* ~1,2! 0 D ~9!

physically corresponds to Cooper pair sources,

C†~ 1̄!Q~ 1̄,2̄!C~ 2̄!5u~ 1̄,2̄!c↑
†~ 1̄!c↓

†~ 2̄!

1u* ~ 1̄,2̄!c↓~ 1̄!c↑~ 2̄!. ~10!

The Nambu Green’s function is then a functional of the au
iliary field Q defined by
5-2
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G~1,2;$Q%!

[2^Tt@C~1!C†~2!#&Q

52S ^Tt@c↑~1!c↑
†~2!#&Q ^Tt@c↑~1!c↓~2!#&Q

^Tt@c↓
†~1!c↑

†~2!#&Q ^Tt@c↓
†~1!c↓~2!#&Q

D .

~11!

The quantities that appear at the end of the calculation w
in analogy with the Green function, be defined in zero sou
field, namely,G(1,2)[G(1,2;0)52^Tt@C(1)C†(2)#&.
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Using the equations of motion~2! and following the alge-
bra of Ref. 17, one finds that

G21~1,2;$Q%!5G0
21~1,2!2S~1,2;$Q%!2Q~1,2!,

~12!

where in Matsubara frequency@kn5(2n11)pT# and Fou-
rier space (k), the noninteracting Green function takes
usual form with diagonal terms only,@ ikn2(«k2m)#21 and
@ ikn1(«k2m)#21, while the effects of interactions are con
tained in the self-energy matrix defined by
S~1,3̄;$Q%!G~ 3̄,2;$Q%!5US 2^Tt@c↓
†~11!c↓~1!c↑~1!c↑

†~2!#&Q 2^Tt@c↓
†~11!c↓~1!c↑~1!c↓~2!#&Q

^Tt@c↑
†~11!c↑~1!c↓

†~1!c↑
†~2!#&Q ^Tt@c↑

†~11!c↑~1!c↓
†~1!c↓~2!#&Q

D . ~13!
it-
cle

the

ep-

lf-
.
-

The notation 11 indicates that the imaginary time is infin
tesimally larger thant1(or smaller for 12).

C. Self-energy and pair susceptibility

The self-energy, as should be clear from the last equat
depends on four-point functions that may be calculated
different channels. For the repulsive Hubbard model, cha
and spin fluctuation channels are dominant, so approxi
tions for the four-point functions are written down in the
channels. However, in the nearest-neighbor attractive m
away from half-filling, it is the pair fluctuations that ar
dominant, even in the paramagnetic state. As a prelimin
remark, we can suggest how the self-energy will be relate
the pair-correlation function by making the key observat
that the diagonal terms can be written as functional der
tives with respect to theu field. First, note that whenu is set
to zero in Eq.~13!, it becomes diagonal andS11 simplifies to
S11(1,2)5 2 U ^Tt @c↓

†(11)c↓(1)c↑(1)c↑
†(3̄)#&G11

21(3̄,2).
The operators located in the middle,c↓(1)c↑(1), can be
obtained from a functional derivative with respect tou* (1,1)
before this field is set to zero. Hence, taking the functio
derivative and setting off-diagonal terms to zero afterwar
one is left with

S11~1,2!52U
dG21~11,3̄;$Q%!

du* ~1,1!
U

Q50

G11
21~ 3̄,2!. ~14!
n,
n
e

a-

el

ry
to

-

l
s,

This is basically what we want. The self-energy will be wr
ten in terms of a response function in the particle-parti
channel.

To continue more generally, we step back and define
susceptibility matrix

X~1,2,3,4;$Q%!52
d

dQ~4,3!
G~1,2;$Q%!, ~15!

whered/dQ(3,4) is a matrix operator in Nambu space

d

dQ~3,4!
5S 0

d

du* ~3,4!

d

du~3,4!
0

D ~16!

such that@d/dQ(3,4)#Q(1,2)5d(123)d(224)I , where I
is the identity matrix in Nambu space. Note that the susc
tibility X is still a matrix in Nambu space with only two
matrix indices~four matrix elements!. With this notation, the
two-point function that we will need to compute the se
energy from Eq.~13!, is the following special case of Eq
~15!: X(1,2,17,17;$Q%). Evaluating the functional differen
tiation explicitly, we have
X~1,2,17,17;$Q%!52S ^Tt@c↓
†~1!c↓~12!c↑~12!c↑

†~2!#&Q

^Tt@c↑~1!c↑
†~11!c↓

†~11!c↑
†~2!#&Q

^Tt@c↓
†~1!c↓~12!c↑~12!c↓~2!#&Q

^Tt@c↑~1!c↑
†~11!c↓

†~11!c↓~2!#&Q
D

2F~17,17;$Q%!G~1,2;$Q%!, ~17!

075115-3
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where we defined a function F that con-
tains only the anomalous pieces of the full Green fu
tion, F12(1

7,17;$Q%)52^Tt@c↑(12)c↓(12)#&Q and
F21(1

7,17;$Q%)52^Tt@c↓
†(11)c↑

†(11)#&Q .
Using rotational invariance and our general result for

self-energy, Eq.~13!, we finally find the following key rela-
tion between self-energy and susceptibility:

S~1,2;$Q%!5UX~1,3̄,17,17;$Q%!G21~ 3̄,2;$Q%!

1UF~17,17;$Q%!d~122!I. ~18!

D. Bethe-Salpeter equation for the three-point susceptibility
and relationship between irreducible vertices and self-

energy

In this section, we derive the Bethe-Salpeter equation
the susceptibility using the functional derivative schem3

This equation allows us to define the two-particle irreduci
vertex that plays for the susceptibility a role analogous
that of the self-energy for the Green function. In deriving t
Bethe-Salpeter equation, we will recover the well-known
lation between self-energy and particle-particle irreduci
vertices. Since the susceptibility is the functional derivat
of G, while the self-energy is trivially related toG21, it is
natural to start fromG(1,4̄;$Q%)G21(4̄,5;$Q%)5d(125)I
and to take the functional derivative of this equation. O
finds

F d

dQ~2,2!
G~1,4̄;$Q%!GG21~ 4̄,5;$Q%!

52s1G~1,4̄!S d

du* ~2,2!
G21~ 4̄,5;$Q%!D

2s2G~1,4̄!S d

du~2,2!
G21~ 4̄,5;$Q%! D , ~19!

where (s1) i , j[d i ,1d j ,2 and (s2) i , j[d i ,2d j ,1 . Using the ex-
pression for the inverse Green function@Eq. ~12!# and the
chain rule to take into account the dependence ofS on $Q%
through18 G, one obtains

d

du* ~2,2!
G21~4,5;$Q%!

52d~225!d~224!s2

2
dS~4,5;$Q%!

dGkl~ 6̄,7̄;$Q%!

dGkl~ 6̄,7̄;$Q%!

du* ~2,2!
~20!

d

du~2,2!
G21~4,5;$Q%!

52d~225!d~224!s1

2
dS~4,5;$Q%!

dGkl~ 6̄,7̄;$Q%!

dGkl~ 6̄,7̄;$Q%!

du~2,2!
. ~21!
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The above equations simplify greatly when the function
derivative is evaluated in the normal, zero source field ca
where particle number conservation implies the vanishing
anomalous correlation functions. We are left with

dGkl~6,7;$Q%!

du* ~2,2!
U

QÄ0

5d k̄,2d l̄ ,1

dG21~6,7;$Q%!

du* ~2,2!
U

QÄ0

,

~22!

dGkl~6,7;$Q%!

du~2,2!
U

QÄ0

5d k̄,1d l̄ ,2

dG12~6,7;$Q%!

du~2,2!
U

QÄ0

.

~23!

Using the latter results in Eq.~19!, multiplying it by G(5,3),
and then integrating over the point 5, we find, with the he
of Eqs.~20! and ~21!,

d

dQ~2,2!
G~1,3;$Q%!U

QÄ0

5s1G~1,2!s2G~2,3!1s2G~1,2!s1G~2,3!

1s1G~1,4̄!
dS~ 4̄,5̄;$Q%!

dG21~ 6̄,7̄!
U

QÄ0

dG21~ 6̄,7̄;$Q%!

du* ~2,2!
U

QÄ0

3G~ 5̄,3!1s2G~1,4̄!
dS~ 4̄,5̄;$Q%!

dG12~ 6̄,7̄!
U

QÄ0

3
dG12~ 6̄,7̄;$Q%!

du~2,2!
U

QÄ0

G~ 5̄,3!. ~24!

Since we consider the normal phase, the off-diagonal Gr
functions vanish and we are left with only two equations th
come from the diagonal components of the above ma
equation. The off-diagonal parts just tell us that two of t
irreducible vertices vanish. Finally then

dG21~1,3;$Q%!

du* ~2,2!
U

QÄ0

5G22~1,2!G11~2,3!

1G22~1,4̄!
dS21~ 4̄,5̄;$Q%!

dG21~ 6̄,7̄!
U

QÄ0

3
dG21~ 6̄,7̄;$Q%!

du* ~2,2!
U

QÄ0

G11~ 5̄,3!,

~25!
5-4
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dG12~1,3;$Q%!

du~2,2!
U

QÄ0

5G11~1,2!G22~2,3!

1G11~1,4̄!
dS12~ 4̄,5̄;$Q%!

dG12~ 6̄,7̄!
U

QÄ0

3
dG12~ 6̄,7̄;$Q%!

du~2,2!
U

QÄ0

G22~ 5̄,3!.

~26!

E. An exact expression for the self-energy where low- and
high-frequency behaviors are separated

The high-frequency limit of the self-energy is given b
the Hartree-Fock result, as can be shown from sum rules.
latter purposes in our approximative scheme, it is usefu
have at hand an exact expression for the self-energy, w
the high-frequency behavior appears explicitly. In this s
tion, we derive such an expression in the case where
auxiliary field Q vanishes.

First, let us recall the sum rules that fix the hig
frequency behavior of the self-energy. In the absence of
ternal field

G~k,ikn!5E dv

2p

A~k,v!

ikn2v

where the single-particle spectral weightA(k,v) for the
Nambu Green function is given by

A~k,v!5E dt eivtS ^$ck,_~ t !,ck,_
† %& 0

0 ^$ck,`
† ~ t !,ck,`%&

D .

~27!

The high-frequency expansion of the Green function is th

G~k,ikn!5
1

ikn
E dv

2p
A~k,v!1

1

~ ikn!2E dv

2p
vA~k,v!1•••,

~28!

where the frequency moments ofA(k,v) are easily com-
puted from equal-time commutators

E dv

2p
A~k,v!5I , ~29!

E dv

2p
vA~k,v!5~«k2m!sz1US ^n↓& 0

0 2^n↑&
D .

~30!

Comparing with

G~k,ikn!5
1

ikn
I1

1

~ ikn!2
@~«k2m!sz1S~k,ikn!#1•••

~31!

it is clear, using spin-rotational invariance, that
07511
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o
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-
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lim
ikn→`

S~k,ikn!5U^n↓&sz . ~32!

An expression where this asymptotic behavior is explic
may easily be obtained from the general formula for the s
energy specialized to zero external field, namely, Eq.~18!
with Q50. Returning to our general discussion@Eq. ~14!#
will help understand the point we were making. In zero e
ternal field, we have

S~1,2!5UX~1,3̄,17,17!G21~ 3̄,2!

52U
d

dQ~17,17!
G~1,3̄;$Q%!U

Q50

G21~ 3̄,2!

~33!

or, looking only at the nonvanishing elements,

S11~1,2!52U
dG21~11,3̄;$Q%!

du* ~1,1!
U

Q50

G11
21~ 3̄,2!, ~34!

S22~1,2!52U
dG12~1,3̄;$Q%!

du~11,11!
U

Q50

G22
21~ 3̄,2!. ~35!

Substituting the Bethe-Salpeter equations~25! and ~26! in
the last two expressions, we have the equivalent express

S11~1,2!52UG22~11,1!d~122!

2UG22~11,4̄!
dS21~ 4̄,2;$Q%!

dG21~ 6̄,7̄!
U

QÄ0

3
dG21~ 6̄,7̄;$Q%!

du* ~1,1!
U

QÄ0

, ~36!

S22~1,2!52UG11~1,11!d~1122!

2UG11~1,4̄!
dS12~ 4̄,2;$Q%!

dG12~ 6̄,7̄!
U

QÄ0

3
dG12~ 6̄,7̄;$Q%!

du~11,11!
U

QÄ0

. ~37!

One may easily check that the terms proportional tod(1
22) in these two exact expressions are precisely
Hartree-Fock contribution, Eq.~32!.

The skeleton diagram representation of the Bethe-Salp
equation~25! and of the self-energy@Eq. ~36!# appear in Fig.
1 of the accompanying paper.14 This skeleton diagram repre
sentation is not necessary to understand the rest of the p
but may be useful for physical understanding. The nonp
turbative approach developed in the following section do
not directly correspond to the summation of an infinite sub
of diagrams.
5-5
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III. A SYSTEMATIC NONPERTURBATIVE APPROACH

A brief reminder of how Hartree-Fock theory is derived
the functional derivative approach will motivate the tw
particle self-consistent approach. At this first level of a
proximation~TPSC!, one hasG(1), S(1) in the presence ofQ
and the corresponding irreducible vertices and suscepti
ties are obtained from the functional derivative approa
The only unknown quantity, double occupancy^n↑n↓&, may
be obtained self-consistently by using what we will call t
local-pair sum rule. The local-pair sum rule is a simple co
sequence of the fluctuation-dissipation theorem. An
proved approximation for the self-energy,S(2), will be found
in Sec. III D. We conclude with a discussion of an intern
accuracy check that, as in the repulsive case, helps delin
the domain of validity of the approach.

A. A perspective: Conserving approximations
and Hartree-Fock theory

In conserving approximations, the self-energy is obtain
from a functional derivative of the Luttinger-War
functional19 that is computed from skeleton diagrams. Irr
ducible vertices for response functions are then obtai
from appropriate functional derivatives. The Hartree-Fo
approach is a special case of conserving approximation.
more standard way to derive the Hartree-Fock approach
treat the general equation for the self-energy Eq.~13! in the
presence of the auxiliary field as if Wick’s theorem applied
the right-hand side of that equation. More specifically, E
~13! becomes, in the Hartree–Fock approximation

SHF~1,3̄;$Q%!GHF~ 3̄,2;$Q%!

5US 2G22
HF~11,1;$Q%! G12

HF~1,1;$Q%!

G21
HF~1,1;$Q%! 2G11

HF~1,11;$Q%!
D

3GHF~1,2;$Q%!. ~38!

Multiplying from the left by (GHF)21 gives SHF. The cor-
responding irreducible vertices for the Bethe-Salpeter eq
tion governing the pair fluctuations, Eq.~24!, are

dS12
HF~1,2;$Q%!

dG12
HF~3,4;$Q%!

U
QÄ0

5
dS21

HF~1,2;$Q%!

dG21
HF~3,4;$Q%!

U
QÄ0

5Ud~122!d~123!d~124!,

~39!

which leads to the simplestT-matrix type approximation. In
the final calculations, we only need the self-energy in z
field. There it is purely diagonal and given by

SHF~1,2!5szU^n↓&d~122!. ~40!

Returning momentarily to the original equation that w
approximated, Eq.~13!, it is important to realize that the
Hartree-Fock approximation satisfies an exact result. F
note that the four-point function becomes simple when po
2 becomes the same as 1. In that case, this quantity tak
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simple form that, because of the anticommutation relatio
depends on whether 2→11 or 2→12. More specifically, we
have the exact results

S~1,3̄;$Q%!G~ 3̄,11;$Q%!

5US ^n↑~1!n↓~1!&Q G12~1,1;$Q%!

0 ^n↑~1!@n↓~1!21#&Q
D , ~41!

S~1,3̄;$Q%!G~ 3̄,12;$Q%!

5US ^n↓~1!@n↑~1!21#&Q 0

2G21~1,1;$Q%! ^n↑~1!n↓~1!&Q
D . ~42!

In zero field, the difference of these two exact results is

S~1,3̄!G~ 3̄,11!2S~1,3̄!G~ 3̄,12!5szU^n↓&. ~43!

Given what we have said in Sec. II E about the exact hi
frequency behavior of the self-energy, the reader will not
surprised to learn that the Hartree-Fock approximation d
satisfy the relation@Eq. ~43!#. Indeed, this exact relation i
sensitive only to the high-frequency limit of the self-energ
as may be proven by writing down explicitly the 1,1 comp
nent of Eq.~43! in Fourier-Matsubara space as follows:

T

N (
k

(
ikn

S S~k,ikn!

ikn2~«k2m!2S~k,ikn!
2

U^n↓&
ikn

D
3~e2 ikn02

2e2 ikn01
!

1
T

N (
k

(
ikn

FU^n↓&
ikn

~e2 ikn02
2e2 ikn01

!G5U^n↓&. ~44!

In this expression, the first sum vanishes because we h
added and subtracted a term that makes it convergent wit
the need for convergence factorse2 ikn06

. Hence, only the
last sum survives. The result is a direct manifestation of
anticommutation relations in the asymptotic behavior of
Green function.

B. Two-particle self-consistency and irreducible vertex

We will call the two exact results@Eqs. ~41! and ~42!#
Tr@SG# for a short cut. They are simply related to the p
tential energy~and hence to double occupancy!, a crucial
quantity for the Hubbard Hamiltonian. Furthermore, they c
be considered as initial conditions for the true expression
defines the self-energy in the most general ca
S(1,3̄;$Q%)G(3̄,2;$Q%), where point 2 has moved awa
from point one. Hence, in the first step of the approximat
that we propose, we perform, as in conserving approxim
tions, a Hartree-Fock-like factorization in an external fie
but we add the constraint that the factorization becomes
act when 2→11 or 2→12. More specifically, in analogy
with the factorization@Eq. ~38!#, we start from theansatz
5-6
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S(1)~1,3̄;$Q%!G(1)~ 3̄,2;$Q%!

5US 2G22
(1)~11,1;$Q%! G12

(1)~1,1;$Q%!

G21
(1)~1,1;$Q%! 2G11

(1)~1,11;$Q%!
D

3A~$Q%!G(1)~1,2;$Q%!, ~45!

where the matrixA($Q%) is obtained by requiring that th
exact relations@Eqs. ~41! and ~42!# be satisfied.20 Setting
alternatively 2→11 or 2→12 in the last expression, an
requiring equality with the respective exact Tr@SG# expres-
sion, we find, using spin-rotational invariance, that in eith
case there is a unique solution for the off-diagonal eleme

S12
(1)~1,2;$Q%!

5U
^n↑~12n↓!&QG12

(1)~1,1;$Q%!d~122!

^n↑&Q^12n↓&Q2G12
(1)~1,1;$Q%!G21

(1)~1,1;$Q%!

~46!

with the analogous expression when the Nambu matrix in
ces 1 and 2 are inverted. It should be clear from this re
that the functional dependence ofA($Q%) on the external
field is only throughG(1)(1,16;$Q%) and double occupanc
^n↓n↑&Q . Nevertheless, this establishes a strong s
consistency relation between one- and two-particle quant
that is absent from any standard diagrammatic appro
That is why we called this portion of the approach tw
particle self-consistent~TPSC!.11 It is important also to note
that the superscript (1) refers to what, in earl
publications,12 we called the zeroth step of the approxim
tion. As we will see in a moment, at this level of approxim
tion the diagonal part ofS(1) is a constant whenQÄ0.
Hence, in this limit,G(1) is equal to a bare propagator on
the chemical potential is adjusted to obtain the proper filli
That is why we had referred to this level of approximati
with superscript (0) in earlier publications. It is important
notice however thatS(1) ~or S(0) in the former notation! may
have a dependence on external magnetic field, for exam
that is absent in the noninteracting case.

The particle-particle irreducible vertices appearing in
Bethe-Salpeter equations~26! and ~25! are obtained from
functional differentiation of the self-energy@Eq. ~46!# as in
any conserving approximation. Since whenQ50 all off di-
agonal functions such asG12

(1)(1,1),G21
(1)(1,1) or d^n↓(1

2n↑)&Q /dG12
(1)(1,1;$Q%) and the like vanish, we are lef

with

dS12
(1)~1,2;$Q%!

dG12
(1)~3,4;$Q%!

U
QÄ0

5
dS21

(1)~1,2;$Q%!

dG21
(1)~3,4;$Q%!

U
QÄ0

5U
^n↓~12n↑!&

^n↓&^12n↑&

3d~122!d~123!d~124!

[Uppd~122!d~123!d~124!.

~47!
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The irreducible vertexUpp is still local, as in the Hartree-
Fock approximation, but, contrary to Hartree-Fock, the b
vertex is dressed. The function that dresses the vertex is
ply related to double occupancy. It can be determined fr
the Bethe-Salpeter equation itself by using the fluctuati
dissipation theorem, allowing us to close the system of eq
tions.

C. An approximate expression forS „1… in the two-particle
self-consistent approach

The self-energy enteringG(1) in zero external field is di-
agonal. There is however an apparent paradox. Indeed,
stituting the TPSC factorization@Eq. ~45!# on the left-hand
side of the two Tr@SG# equations@Eqs. ~41! and ~42!#, all
for QÄ0, seems to give two different solutions for the dia
onal value ofA($Q%), and hence for the correspondingS(1).
Let us useS(1) with a 1 or 2 index depending on whethe
they are the solution of Eqs.~41! or ~42!. In either case,
S(1)(122) is proportional to d(122), so that using
G116

(1) (1,11)5^n↑(1)& and G116
(1) (1,12)5211^n↑(1)& and

the analogous forG22
(1) , one finds

S111
(1) ~1,2!52S222

(1) ~1,2!5~U2Upp^12n↓&!d~122!,
~48!

S112
(1) ~1,2!52S221

(1) ~1,2!5Upp^n↑&d~122!. ~49!

From these results, keeping the filling fixed, we have

S1
(1)~1,3̄!G1

(1)~ 3̄,11!2S2
(1)~1,3̄!G2

(1)~ 3̄,12!5szU^n↑~1!&.
~50!

This suggests that the antisymmetric combinationS1
(1)

2S1
(1) is related to the high-frequency asymptotic behav

of the self-energy, as in the Hartree–Fock case. The symm
ric combination on the other hand should not depend
convergence factors, as can be seen by using argum
analogous to those of Eq.~44!. This quantity should then be
a measure of the low-frequency behavior of the self-ene
With n[^n↓&1^n↑&, the quantity

1

2
~S1

(1)~1,2!1S2
(1)~1,2!!5szS U

2
2

Upp~12n!

2 D d~122!

~51!

we expect, plays the role of a chemical potential shift,m (1)

2m0, with respect to the noninteracting valuem0. We use
the notationm (1) with a superscript (1) to note that this is th
chemical potential corresponding to the self-energyS (1). We
will give additional supporting evidence for this conjectu
in Sec. IV that discusses exact results satisfied by our
proach and in Appendix A . In actual calculations the chem
cal potential used in the Green function occurring at this s
of the calculation is determined from the conditio
G11

(1)(1,11)5^n↑(1)& with

G11
(1)~k,ikn!5

1

ikn2«k1m (1)2S11
(1)~k,ikn!

. ~52!
5-7
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S11
(1)(k,ikn) in the combinationm (1)2S11

(1)(k,ikn) is a con-
stant so thatm (1)2S11

(1)(k,ikn) equals the noninteractin
chemical potentialm0.

It is important to keep in mind the following. The ap
proximate analytical expression@Eq. ~51!# for S(1) and the
corresponding chemical potentialm (1) are useful for analyti-
cal arguments and numerical estimates.21 However, more
fundamentally, the chemical potential is a thermodynam
quantity that can be computed in a consistent way, al
with all other thermodynamic quantities. In diagramma
methods, the Luttinger–Ward functional provides a syste
atic method to obtain such thermodynamically consist
results.19 Since our approach is nonperturbative, another
proach must be used. At this point,m (1) is a first estimate for
the true chemical potential. A better estimate ism (2), corre-
sponding toS(2), the next level of approximation for th
self-energy.

D. Two-particle self-consistent plus improved approximation
for the self-energy

Let us summarize what we have up to now. In this TP
approach for the attractive Hubbard model, there is only
particle-particle irreducible vertexUpp @Eq. ~47!#. In addi-
tion, the two pair susceptibilities that we need, namely,

2
dG21~2,2;$Q%!

du* ~1,1!
U

QÄ0

52^Tt@c↓~1!c↑~1!c↓
†~2!c↑

†~2!#&,

~53!

2
dG12~2,2;$Q%!

du~1,1!
U

QÄ0

52^Tt@c↑
†~1!c↓

†~1!c↑~2!c↓~2!#&

~54!

are quite easily related by the operation 2↔1, and anticom-
mutationc↑(2)c↓(2)52c↓(2)c↑(2). So wedefine

xp~1,2![2
dG21~2,2;$Q%!

du* ~1,1!
U

QÄ0

52
dG12~1,1;$Q%!

du~2,2!
U

QÄ0

.

~55!

The equality of these two functions is a reflection of the f
that for on-site pairing, the Pauli principle makes the trip
channel vanish. Hence, substituting the particle-particle i
ducible vertex@Eq. ~47!# in one of the Bethe–Salpeter equ
tions @Eq. ~26!#, and expressing the result in terms of t
ordinary Matsubara Green functionsG↑

(1)(1,2)5G11
(1)(1,2)

andG↓
(1)(1,2)52G22

(1)(2,1), we find the pair susceptibility a
the first level of approximationxp

(1)(1,2):

xp
(1)~1,2!5G↑

(1)~1,2!G↓
(1)~1,2!

2UppG↑
(1)~1,4̄!xp

(1)~ 4̄,2!G↓
(1)~1,4̄!. ~56!

In Fourier space and with the definitions,q5(q,iqn), qn
52npT, k5(k,ikn), kn5(2n11)pT, and

x ir
(1)~q!5

T

N (
k

G↓
(1)~k1q!G↑

(1)~2k! ~57!
07511
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for the particle-particle susceptibility that is irreducible wi
respect toUpp , the above equation will take the form

xp
(1)~q!5

x ir
(1)~q!

11Uppx ir
(1)~q!

. ~58!

To close the set of equations, we need to solve for
irreducible vertex

Upp5U
^n↓~12n↑!&

^n↓&^12n↑&
. ~59!

That may be done by using either of the two exact limits
→11 and 2→12 of Eqs.~53! and ~55!:

xp
(1)~1,11!5^n↓n↑&, ~60!

xp
(1)~1,12!512n1^n↓n↑&. ~61!

The left-hand side of the latter two equations, that one co
call local-pair sum rules, can be transformed into the follo
ing two sum rules when our approximation is used for t
susceptibility

xp
(1)~1,11!5^n↓n↑&5

T

N (
q

x ir
(1)~q!

11Uppx ir
(1)~q!

e2 iqn02
,

~62!

xp
(1)~1,12!512n1^n↓n↑&5

T

N (
q

x ir
(1)~q!

11Uppx ir
(1)~q!

e2 iqn01
.

~63!

We will discuss in Sec. IV why, in our approach, both su
rules are consistent and so give exactly the same resul
Upp . Monte Carlo simulations14 confirm that the pair sus
ceptibilities, calculated with Eqs.~59!, ~62!, ~57!, and ~52!
are excellent approximations from weak to intermediate c
pling.

As we saw above, at this stage the self-energyS (1) enter-
ing the calculation is a constant determined in such a w
that we have the proper filling. At high frequency, the exa
limit of the self-energy is the Hartree-Fock result and t
corresponding irreducible vertex is the bare interaction.
our section on exact results, we have found an expression
the self-energy, Eqs.~36! and ~37!, that is the sum of two
terms, a first one that is the high-frequency Hartree-Fo
behavior, and a second one that only involves the lo
frequency behavior of Green functions, of irreducible ver
ces and of susceptibilities. As we have seen above, our
proximate expressions for these quantities are consistent
are low-frequency approximations. Hence, we substitute
Eqs.~36! and~37! the result@Eq. ~56!# for the susceptibility
2dG21

(1)(2,2;$Q%)/du* (1,1)uQÄ05xp
(1)(1,2), and the corre-

sponding results@Eq. ~47!# for the irreducible vertex
dS21

(1)(1,2;$Q%)/dG21
(1)(3,4;$Q%)uQÄ0 and Green function

G(1). One is left with
5-8
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S↑
(2)~1,2!5UG↓

(1)~1,11!d~122!

2UUppG↓
(1)~2,1!xp

(1)~1,2!. ~64!

Appendix B 1 discusses the relation to the corresponding
mula in the repulsive case. Note that all the terms on
right-hand side of this equation, including the irreducib
vertexUpp , are at the same level of approximation. In pa
ticular, the irreducible vertexUpp that appears explicitly, is
the functional derivative of the field-dependentS(1) that en-
ters G(1) and xp

(1) . This is crucial for the quality of the
approximation.12,22 This type of consistency is absent
many modern self-consistent treatments whose self-en
contains renormalized Green’s functions but with only b
vertices.5 Going to Fourier space and using the full expre
sion for the susceptibility@Eq. ~58!#, we have

S↑
(2)~k!5Un↓2U

T

N (
q

UppG↓
(1)~2k1q!

x ir
(1)~q!

11Uppx ir
(1)~q!

.

~65!

Spin-rotational invariance gives us the result for down sp
Note that one of the vertices is bare while the other
dressed, contrary to the case where there is a Migdal th
rem.

The superscript (2) on the last expression for the s
energy, indicates that it is the next level of approximation.
improve the susceptibility calculation we would need the
reducible vertices corresponding toS12

(2)(1,2;$Q%), which we
do not have. Hence the calculation stops at this level. Ph
cally, the collective modes are less sensitive to details of
quasiparticles, so they can be computed first with sim
Green functions. The self-energy on the other hand is se
tive to the collective modes~they have zero-frequency Ma
subara contributions contrary to fermionic quantities! and
hence we have to take these modes into account when
want a better approximation for the self-energy.

E. Internal accuracy check

Either by returning to the derivation@Eq. ~34!# of
S↑

(2)(1,2), which involves a four-point function Eq.~53! re-
lated to the pair susceptibility@Eqs. ~56! and ~55!# and
double-occupancy@Eq. ~ 60!#, or by starting from the Fourie
space expression@Eq. ~65!# and using the local-pair sum rul
@Eq. ~62!# for xp

(1) and the corresponding sum rule forx ir
(1) ,

one finds that Eq.~64! satisfies

S↑
(2)~1,2̄!G↑

(1)~ 2̄,11!5
T

N (
k

S↑
(2)~k!G↑

(1)~k!e2 ikn02

5U^n↓n↑&. ~66!

U^n↓n↑& entering this equation is exactly the same as t
computed from the local-pair sum rule Eq.~62!. This result is
analogous to that found in the repulsive model. Note t
G↑

(1) enters the above equation. An indication of the accur
of our approximations may be obtained by checking by h
much S↑

(2)(1,2̄)G↑
(2)(2̄,11) differs from U^n↓n↑& obtained

from the local-pair sum rule. We have checked that there i
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most a few percent discrepancy between both calculatio
except in the pseudogap regime. Note that the chemical
tentialm (2) enteringG↑

(2) must be obtained from the numbe
conservation equation. We refer to Ref. 23 for a discussion
Luttinger’s theorem in this context.

In any approximation for the many-body problem, fu
consistency for all correlation functions is unachievable. F
example, in conserving approximations4,5, one starts from
diagrams for the Luttinger-Ward functional and for the co
responding free energy. Then a self-energy and irreduc
vertices are obtained from functional differentiation. The
quantities may then be used in the Bethe-Salpeter equatio
obtain the pair susceptibility. From that pair susceptibili
one can compute double occupancy through the exact re
@Eq. ~60!#. The latter double occupancy is in general differe
from the one obtained fromS(1,2̄)G(2̄,11) since it does not
contain the same set of diagrams. So if the double occupa
obtained from the susceptibility@Eq. ~60!# is integrated over
a coupling constant to obtain the free energy, the result w
in general, be different from the original free energy. Co
serving approximations are not self-consistent at the tw
particle level. Other criticisms of these approaches appea
Refs. 12 and 22.

IV. EXACT RESULTS SATISFIED BY OUR
NONPERTURBATIVE APPROACH

We briefly discuss exact relations and consistency requ
ments that are satisfied by our approach. Details of som
the proofs may be found in Appendix A.

A. Sum rules on single-particle spectral weight

Consider first the single-particle properties. These sho
be calculated withG(2) that contains the self-energy@Eq.
~65!# and the corresponding chemical potential. One can
tract the moments of the corresponding spectral wei
A(2)(k,v) from the high-frequency expansion ofG(2)(k,ikn)
in analogy with Eq.~28!. In the self-energyS (2)(k,ikn), Eq.
~65!, the Hartree–Fock contribution appears explicitly
that the exact high-frequency limit@Eq. ~32!# is satisfied.
This means that the normalization and first moment
A(2)(k,v) satisfy the exact results@Eq. ~29! and ~30!#.

B. Sum rules on pair spectral weight

Concerning two-particle properties, more specifically t
pairing susceptibility, there are a number of exact results
our approach satisfies. First there are the two local-pair s
rules @Eqs. ~62! and ~63!# that are a consequence of th
fluctuation-dissipation theorem. The value ofUpp obtained
from either one of them is the same. This is demonstrate
Appendix A.

The other exact properties we shall consider concern
pair spectral weight. Using the definition of the pair fie
D @Eq. ~4!# and of the pair susceptibility@Eqs. ~55!, ~53!,
and ~54!# the latter may be written asxex(1,2)
5^TtD(1)D†(2)&. The subscriptex stresses that we are, fo
now, considering properties of the exact pair susceptibil
5-9
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The Lehmann representation, and the periodicity in ima
nary time, allow one to show that

xex~q,iqn!5E dv

p

xex9 ~q,v!

v2 iqn
, ~67!

where the time Fourier transform of the pair spectral wei
xex9 (q,v) is defined byxex9 (q,t)5 1

2 ^@Dq(t),Dq
†(0)#&. From

the latter definition and the equations of motion@Eqs.~5! and
~6!# one can show that the quantityxex9 (q,v) obeys the fol-
lowing sum rule:

E dv

p
xex9 ~q,v!5^@Dq~0!,Dq

†~0!#&512n, ~68!

wheren is the filling that is obtained from the single-partic
Green functions entering the calculation ofxex9 (q,v). We
show in Appendix A that our approximate expression for
susceptibility Eq.~58! satisfies this manifestation of the Pau
principle exactly, for all wave vectorsq. That is why we can
use either of the two local-pair sum-rules@Eqs. ~62! and
~63!# to find self-consistently the value of^n↑n↓&.

Proceeding to the first moment of the pair spectral weig
it is shown in Appendix A, that

E dv

p
vxex9 ~q,v!5

1

N (
k

F«k1«2k¿q22S m2
U

2 D G
3~12^nk_&2^n2k¿q`&!

5F 1

N (
k

~«k1«2k¿q!~122^nk_&!G
22S m2

U

2 D ~12n!. ~69!

Like the previous sum rule, this result is valid forall wave
vectorsq. It is a generalization of thef sum-rule to the case
of the attractive Hubbard model, a sort of off-diagonalf sum-
rule. It is a generalized Ward identity that relates two-parti
quantities on the left-hand side with quantities obtained fr
the one-particle Green function on the right-hand side.
half-filling, m2(U/2)50, where there is an exact canonic
transformation from the attractive to the repulsive Hubb
model, the above result reduces precisely to thef sum-rule
for the repulsive case. Again, the above expression@Eq. ~69!#
relates a two-particle quantity, on the left-hand side, to
single-particle property, on the right-hand side. Neither
pair susceptibility nor the single-particle Green function a
known exactly in our approach. Nevertheless, as shown
Appendix A, when our approximationxp

(1) for the pair sus-
ceptibility is substituted on the left-hand side of Eq.~69!, and
our expression for the corresponding single-particle Gr
function G(1) is substituted on the right-hand side, the equ
tion is satisfied exactly as long as one uses

m (1)5m01
U

2
2

Upp

2
~12n! ~70!
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for the chemical potential appearing on the right-hand si
This is consistent with the fact that the quantities entering
right-hand side of this equation must pertain to the sing
particle Green functions used in the calculation ofxp9(q,v)
on the left-hand side. Since the chemical potential enter
G(1) should bem (1)5m01 S (1) to obtain the correct filling,
use of the approximation@Eq. ~51!# for S (1) leads to the
above result@Eq. ~70!#. Recall however that Eq.~51! for S (1)

is not rigorous. Nevertheless, away from the renormaliz
classical regime, where the self-energy is weakly freque
dependent, the chemical potential obtained from this form
differs little from the one obtained at the second level
approximationS (2) or from Monte Carlo simulations in the
weak to intermediate coupling regime.14 The result@Eq. ~69!#
can also be considered as a type of consistency cond
between one- and two-particle quantities analogous
the relation between Tr(SG) and U^n↓n↑& discussed in
Sec. III E.

C. Miscellaneous

The Mermin-Wagner theorem is satisfied by our a
proach. That theorem states that classical fluctuation eff
prohibit continuous symmetry breaking in two dimension
The proof follows the steps of Appendix A.3 Ref. 12. Th
Kosterlitz-Thouless-Berezinskii24 transition, on the other
hand, involves algebraic order and large-scale vortex st
tures that are absent from the present approach. This tra
tion is thus inaccessible to us. Far from the critical point,
the other hand, one can show, following the steps of Ref.
in analogy with the repulsive case, that there is Kanam
Brueckner ~quantum-fluctuation! type screening ofUpp
which is given by the approximate formula

Upp.
U

12LU
; L5

T

N

1

^n_&^12n`&
(

q
@x ir

(1)~q!#2.

~71!

Finally, it is important to notice that all calculations a
done at constant density. In particular, the Green funct
G(1) entering the calculation ofS (2) in Eq. ~65! is evaluated
at the same density as the final resultG(2). This is motivated
by the existence of Luttinger’s theorem, which states that
volume enclosed by the Fermi surface atT50 depends only
on density, not on interaction. It would be unphysical to
erate fromS (1) to S (2) starting from aG(1) whose Fermi
surface associated singularities are at locations in the B
louin zone that never intersect those ofG(2). The constant-
density constraint ensures maximum overlap. This point
view is motivated by Luttinger’s approach. It is discuss
further in Ref. 26. Luttinger’s theorem should be satisfied
a very good approximation in our approach, as for the rep
sive model.12

V. CONCLUSION

In this paper we have presented a generalization of
approach developed in Ref. 12 to the attractive Hubb
model. We first established a number of exact results
form the basis of the approximation method that we int
5-10
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duced in Sec. III. The first level of approximation~two-
particle self-consistent! is based on a Hartree-Fock like fa
torization ansatzfor the self-energy in the presence of a
external off-diagonal field, Eq.~45!. Thatansatzdiffers from
the standard Hartree-Fock factorization@Eq. ~38!# by the
presence of a constant matrixA(Q) that forces the factoriza
tion ansatzto reduce to the unfactorized four-point functio
in the special case where the later involves density-den
correlations~double occupancy!. Thatansatzleads to the ir-
reducible vertex for pair fluctuations simply through fun
tional differentiation. The resulting irreducible vertex, give
by Eq. ~59!, depends on double occupancy, a quantity t
may then be determined self-consistently using
fluctuation-dissipation theorem derived sum rules@Eqs.~62!
and~63!#. Either one of these local-pair sum rules suffices
close the system of equations since they are equivalent.
exact equivalence is satisfied in our approach because
normalization sum rule for the pair spectral weight, Eq.~68!,
is obeyed. This sum rule is a manifestation of the Pauli p
ciple.

The self-energyS(1) entering the single-particle Gree
function at that first level of approximation is constant. T
value of this constant is irrelevant for the calculation of t
pair susceptibility, since we work at constant filling, whic
meansS(1) can be absorbed in the chemical potential. Ne
ertheless, we have argued that Eq.~51! should be a good
approximation for the value of the constant self-energy
that first level of approximation, since it follows from a co
sistency requirement between theansatz@Eq. ~45!# and the
two possible values of Tr(SG). In addition, Eq.~51! for S(1)

formally allows the first-moment@*(dv/p)vxp9(q,v)# sum
rule on the pair spectral weight to be satisfied~Appendix A!.
That sum rule is the off-diagonal generalization of thef sum
rule familiar from the particle-hole channel.

The rough approximation that the self-energy is a c
stant, suffices to obtain a good approximation for the lo
frequency pair susceptibility, since collective modes do
generally depend strongly on details of the damping of
underlying fermions. Details of single-particle damping d
however, depend strongly on the collective modes. It is p
sible then to improve our approximation for the self-ener
by using our results for the pair fluctuations in an exact f
mula@Eq. ~36!# for S where the high-frequency limit appea
explicitely. That gives us a better~cooperon-type! approxi-
mation for the self-energy@Eq. ~65!#. Clearly, that approxi-
mation does not assume that Migdal’s theorem is satis
since one of the vertices is dressed. When Migdal’s theo
applies, both vertices are bare. As in previous work,12 one
can use the difference betweenS↑

(2)(1,2̄)G↑
(2)(2̄,11) and

U^n↓n↑& as a check on the level of accuracy of approach
discussed in Sec. III E. Formal comparisons with other
proaches are presented in Appendix B. Note that our
proach is in theSO(N→`) universality class, by argument
similar to those that apply to the repulsive model.27 Hence,
the Mermin-Wagner theorem is satisfied as it should,
algebraic long-range order of the Kosterlitz-Thouless type
beyond the accuracy of any microscopic theory that does
use renormalization-group arguments to reach the lo
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wavelength limit and treat theSO(2) symmetry exactly.
In summary then, in its simplest form, our generalizati

of Ref. 12 to the attractive Hubbard model is expressed
the three simple equations, Eqs.~59!, ~62!, and~65! plus the
constant density constraint that determines the chemical
tential appropriate to the level of approximation. Extensio
of this approach have also been proposed.28 Questions re-
lated to thermodynamic consistency and calculation of ot
response functions will be presented in a later publication
the accompanying paper,14 our approach is compared in de
tail with results of quantum Monte Carlo simulations. In a
dition to achieving quantitative agreement with simulation
this approach predicts the appearance of a pseudogap i
single-particle spectral weight when the pair fluctuations
ter the renormalized classical regime. This is qualitativ
different from the results obtained from the self-consist
T-matrix approximation, or FLEX-type approaches. The ro
of the low space dimension, the pair-correlation length, a
single-particle thermal de Broglie wave length, and mo
generally the mechanism for the opening of this pseudog
have been discussed in detail in Ref. 12.
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APPENDIX A: SUM RULES AND HIGH-FREQUENCY
EXPANSION FOR THE PAIR SUSCEPTIBILITY

In this Appendix we give more details on the derivation
the results presented in Sec. IV. Let us begin with the hi
frequency expansion of the pair susceptibilityxp(q,iqn) for
any approximation that has a spectral representation suc
Eq. ~67!. From that spectral representation, one obtains

xp~q,iqn!'2E dv

p
xp9~q,v!S 1

iqn
D

2E dv

p
vxp9~q,v!S 1

iqn
D 2

1•••. ~A1!

Let us now consider the exact susceptibilityxex(q,iqn). The
moments ofxex9 (q,v) that appear as coefficients of the e
pansion in powers of (iqn)21 may be obtained as follows
The first one follows for all values ofq from the equal-time
commutator in Eq. ~68!. The next coefficient,
*(dv/p)vxex9 (q,v), follows from
5-11
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E dv

p
vxex9 ~q,v!52F K F ]

]t
Dq~t!,Dq

†~0!G L G
t50

.

~A2!

The latter equal-time commutator may be computed a
(]/]t)Dq(t) is rewritten, with the help of the equation o
motion, Eq.~5!, leading to the result@Eq. ~69!#.

Since our approximate expression@Eq. ~58!# for the pair
susceptibility admits a spectral representation, its mome
may be obtained from the high-frequency expansion in po
ers of (iqn)21, by analogy with the method in Ref. 12. Fro
our approximate formula@Eq. ~58!# xp

(1)(q)215x ir
(1)(q)21

1Upp and the largeiqn expansion ofx ir
(1)(q) one finds that

lim
iqn→`

iqnxp
(1)~q,iqn!5 lim

iqn→`

iqnx ir
(1)~q,iqn!52~12n!,

~A3!

in agreement with the exact result@Eq. ~68!#. Note that the
large iqn limit of x ir

(1)(q,iqn) must be taken after the sum
over fermionic frequencies in Eq.~57!.

The first moment~off-diagonalf sum-rule! is given by

2E dv

p
vxp9

(1)~q,v!

5 lim
iqn→`

@~ iqn!2xp
(1)~q,iqn!1 iqn~12n!#

5 lim
iqn→`

@~ iqn!2x ir
(1)~q,iqn!„12Uppx ir

(1)~q,iqn!…

1 iqn~12n!#. ~A4!

Substituting the exact results for the high-frequency exp
sion of x ir

(1)(q,iqn), one obtains

E dv

p
vxp9

(1)~q,v!5
1

N (
k

~«k1«2k¿q!~122^nk_&!

22m0~12n!1Upp~12n!2. ~A5!

In this expression,̂nk_& is computed fromG(1), hence is a
Fermi function, andm05m (1)1S (1) enters the Green func
tion G(1) from whichx ir

(1) is computed. Since the self-energ
S (1) enteringG(1) is a constant,m0 coincides with the non-
interacting chemical potential appropriate for the filling w
are considering. Comparing with the exact result@Eq. ~69!#
we see that the chemical potential at that level of appro
mation should be given bym (1)5m01@U2Upp(12n)#/2,
which coincides with our proposed approximation@Eq. ~51!#.
Numerically, we have checked that this approximate che
cal potential is quite close to the chemical potentialm (2)

obtained withS (2), and that the latter in turn is close to tho
obtained from Monte Carlo simulations,14 as long as we are
far from the renormalized classical regime, whereS(2) ac-
quires a strong frequency dependence.
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APPENDIX B: COMPARISON WITH OTHER
APPROACHES

We first comment on the connection to the formalism
the repulsive model. This leads us then to a discussion of
widely used self-consistentT-matrix approximation and of
another ‘‘mixed’’ approach that has been extensively appl
recently.29

1. Mapping to the repulsive model and comparisons with self-
consistentT-matrix approximation

At half-filling, the Lieb-Mattis canonical transformatio
ci ,↑→ci ,↑ , ci ,↓→eiQ"r ici ,↓

† with QÄ(p,p), maps the repul-
sive into the attractive Hubbard model. The same canon
transformation maps spinS, densityr, and pairing operators
into each other as follows: Sz(Q¿q)→r(Q¿q),
S1(Q¿q)→2D†(q), and S2(Q¿q)→2D(q). For a
chemical potential different fromU/2 ~half-filling!, the re-
pulsive model maps into the attractive model at half-fillin
but in a finite Zeeman coupled magnetic field. The appro
presented here for the attractive model would, at half-fillin
translate into the transverse-channel calculation for the re
sive model.22 In that U.0 case, Ref. 30 presents only th
longitudinal channel calculation~but using a formal ap-
proach that inspired the present paper!. The analog calcula-
tion for the attractive Hubbard model would have lead us
two irreducible vertices. One vertex would have been for
charge fluctuations. These are related to pair fluctuations
the SO(3) symmetry of the model an51, which implies
that the corresponding irreducible vertex there is alsoUpp .
The other vertex would have been for the nonsingular sp
fluctuation channel. The two vertices would have appeare
a self-energy formula that would replace Eq.~64!. However,
at n51, the best self-energy formula for the attractive Hu
bard model would be obtained from the canonical transf
mation of that presented in Ref. 22 which preserves cross
symmetry. For problems sufficiently far away from ha
filling ( TX!m) however, the pair fluctuations suffice.31

In the repulsive model case, we have presented gen
analytical arguments12 as well as detailed comparisons b
tween Monte Carlo simulations,12,22 our approach, and self
consistent Eliashberg-type approaches~such as the
fluctuation-exchange approximation!. Most of our general
criticism concerning self-consistent approaches in the re
sive case apply to self-consistentT-matrix plus fluctuation
exchange approaches in the attractive case.

More specifically, one of the key qualitative differenc
between our approach and self-consistent approaches is
the latter do not predict the existence of a fluctuation-indu
pseudogap in the single-particle spectral weight in two
mensions. We have demonstrated at length, through com
sons with Monte Carlo simulations22,32 and with physical
arguments,12 that this is incorrect in both the repulsive an
the attractive cases.

2. The GG„0… approach

An alternate approach based on computing the irreduc
susceptibility with one bare and one dressed Green func
has been extensively used lately.29 More specifically, in this
approach
5-12
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xp5
x̃p

11Ux̃p

, ~B1!

where

x̃p5
T

N (
k

G↓~k!G↑
0~2k¿q! ~B2!

with the self-energy enteringG given by

S↓~k!5
T

N (
q

U

11Ux̃p~q!
G↑

0~q2k!e2 i (qn2kn)02

~B3!

5Un↑
02U2

T

N (
q

x̃p~q!

11Ux̃p~q!
G↑

0~q2k!. ~B4!

Since there is a single chemical potential for the two Gre
functionsG↓ andG↑

0 , there are two different expressions f
the occupation numbers operators (nk and nk

0) and for the
corresponding fillings, (n andn0).

A positive aspect of this approach is that it exhibits co
sistency between one- and two-particle properties in
sense that the exact result (T/N)(kS↓(k)G↓(k)e2 ikn02

5U^n↓n↑& that follows from the equation of motion, is sa
isfied exactly by the above approximate scheme. Inde
starting from the approximate formula@Eq. ~B3!# for the
self-energy, and using Eq.~B2! for the susceptibility, one
finds that

T

N (
k

S↓~k!G↓~k!e2 ikn02
5U

T

N (
q

x̃p~q!

11Ux̃p~q!
e2 iqn02

5U^D†D&5U^n↑n↓&. ~B5!

One obtains the last equalities using the fluctuation diss
tion theorem. Hence, in this approach, the double occupa
obtained from single-particle quantities~namely, S↓G↓) is
exactly the same as that found from the pair susceptibilit
two-particle quantity.

On the negative side, the spectral weight correspondin
the susceptibility@Eq. ~B1!# does not satisfy the sum rules o
the first two moments discussed in Eqs.~69! and ~68!. To
show this, we first need a few sum rules on the sing
particle spectral weight. Following the steps in Appendix
of Ref. 12, the high-frequency expansion ofG, with S given
by Eq. ~B4!, gives the following sum rules for the corre
sponding spectral weightA(k,v):

E dv

2p
A~k,v!51, ~B6!
s
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-
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a
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-

E dv

2p
vA~k,v!5«k2m1Un2s

0 . ~B7!

Also, the equation of motion forG gives

E dv

2p
v f ~v!A~k,v!5

1

N (
k

~«k2m!nk,s1U^n↑n↓&.

~B8!

The above sum rules are valid for bothG and G(0). In the
latter case however, we take the Fermi function for the
cupation number andU50 on the right-hand side of the
above equations.

We are now ready to check the sum rules forx̃p . Using
the spectral representation forG in the expression for the
susceptibility@Eq. ~B2!#,

x̃p~q,iqn!

5
T

N (
k

(
ikn

E dv

2p

A~k,v!

ikn2v

1

2 ikn1 iqn2~«2k¿q2m!
,

~B9!

and performing the high-frequency expansion after the su
mation overikn , one obtains

lim
iqn→`

@ iqnx̃p~q,iqn!#5211n↓1n↑
0 ~B10!

with the help of the normalization@Eq. ~B6!# and first mo-
ment sum rule@Eq. ~B7!#. This should be compared with th
exact result (211n) found in Eq.~A3!. The difference be-
tween the two fillingsn↓ andn↑

0 is a measure of how much
this approximation violates the Pauli principle.

Pursuing the largeiqn expansion and using spin rotation
invariance and the sum rules@Eqs. ~B6! to ~B8!# on the
single-particle spectral weight, one obtains for the first m
ment of the pair spectral weight~off-diagonalf sum-rule!

E dv

p
vxp9~q,v!

5
1

N (
k

H F«k1«2k¿q22S m2
U

2 D G~12^nk,↓&2^n2k¿q,↑
0 &!

2Un↓2U~^n↑n↓&2n↓n↓!12Un↑
0n↓J . ~B11!

Even withnk5nk
0 there are deviations from the exact res

Eq. ~69! that are linear inU.
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