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Effect of noise on geometric logic gates for quantum computation

A. Blais* and A.-M. S. Tremblay†
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~Received 16 July 2002; published 17 January 2003!

We introduce the nonadiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation
and show how this phase on one qubit can be monitored by a second qubit without any dynamical contribution.
We also discuss how this geometric phase could be implemented with superconducting charge qubits. While
the nonadiabatic geometric phase may circumvent many of the drawbacks related to the adiabatic~Berry!
version of geometric gates, we show that the effect of fluctuations of the control parameters on nonadiabatic
phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater
extent quantum gates that use the Berry phase instead of the dynamic phase.
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I. INTRODUCTION

To be useful, quantum computers will require long coh
ence time and low error rate. To attain this goal, good des
and careful choice of the qubit’s operation point are cruc
@1#. It is, however, believed that this will not be enough a
that some kind of ‘‘software’’ protection will be necessar
To achieve this, different strategies have been sugges
quantum error correction@2#, decoherence-free subspac
@3,4#, and bang-bang control@5#.

Another approach to minimize the effect of imperfectio
on the controlled evolution of qubits is to use geomet
phases and, in particular, the adiabatic geometric phase~or
the Berry’s phase! @6#. Contrary to the dynamic phase, th
Berry’s phase does not depend on time but is related to
area enclosed by the system’s parameters over a cyclic
lution in parameter space. It is, therefore, purely geometri
nature. As a result, it does not depend on the details of
motion along the path in parameter space: as long as the
is left unchanged, the phase is left unchanged by imper
tions on the path. This tolerance to area preserving imper
tions has suggested to some authors that Berry’s phase c
be a useful tool for intrinsically fault-tolerant quantum com
putation. For example, from the above argument, one is
to think that Berry’s phase gates will not be very sensitive
random noise along the path@7#. Proposals for the observa
tion and use of this phase for quantum computation h
been given for different physical systems@7–9#. Application
of the non-Abelian geometric phase@10# to quantum compu-
tation was also the subject of several publications@11–14#.

In this paper, we consider another type of geometric ph
as a tool for quantum computation: the nonadiabatic,
Aharonov-Anandan~AA !, geometric phase@15#. As the Ber-
ry’s phase, the AA phase is purely geometric. It is related
the area enclosed by the state vector in projective space~see
below! during a cyclic evolution. One would, therefore, b
lieve that quantum gates based on this geometric phase
have some built-in tolerance to noise about the path. The
of this gate as a tool for intrinsically fault-tolerant quantu
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computation was also recently suggested in Ref.@16#.
In this paper, we point out that when compared to t

Berry’s phase, the AA phase seems to have many advant
for quantum computation. We also discuss quite gener
how to monitor this global phase on one qubit using a sec
qubit. Implementation of the AA phase in a symmetric s
perconducting charge qubit@17# is also discussed. Implemen
tation in other quantum computer architectures is a sim
generalization. The main point of this paper, however, is
show that the above arguments concerning tolerance to n
do not hold. Logic gates based on this phase are in factmore
affected by random noise in the control parameters t
equivalent dynamic gates. By studying the effect of rand
noise on the qubit’s control parameters, we are able to ob
a bound on the value of the phase, beyond which the
phase gate would be advantageous over its dynam
equivalent. In this way, we show that the AA phase is ne
useful in practice. This result is confirmed numerically f
different noise symmetries. Moreover, using the same a
lytical and numerical approaches, we point out that quant
gates based on Berry’s phase are also more affected by
tuations than their dynamical counterparts.

II. ADIABATIC VERSUS NONADIABATIC GEOMETRIC
PHASE GATES

Let us begin by recalling the main ideas related to
Berry’s phase and see what are its drawbacks for quan
computation applications. Consider a system whose Ha
tonian H(t) is controlled by a set of external paramete
R(t). Upon varyingR(t) adiabatically, if the system is ini-
tially in an eigenstate ofH, it will remain in an eigenstate o
the instantaneous Hamiltonian. Moreover, ifH is nondegen-
erate on a closed loopC in parameter space such thatR(0)
5R(t), the final state will differ only by a phase factor from
the initial state. Berry has shown that this phase factor
both a dynamic and a geometric contribution, the later
pending solely on the loopC in parameter space@6#. If the
initial state is a superposition of eigenstatesucn& of the
Hamiltonian, each of the eigenstates in the superposition
acquire a Berry phaseucn(t)&5U(t)ucn(0)&5eifnucn(0)&
for some real, eigenstate dependent, phasefn @18#. These
phases will generally have both dynamic and geometric c
©2003 The American Physical Society08-1
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A. BLAIS AND A.-M. S. TREMBLAY PHYSICAL REVIEW A 67, 012308 ~2003!
tributions. This is not a cyclic evolution of the state vect
but this does not lead to any ambiguities since the Ber
phase is defined over parameter space.

It follows from the above that the application of adiaba
geometric phases to quantum computation has several d
backs. First, quantum computers will very likely have a sh
coherence time. To take full advantage of this short time,
logic operations should be realized as fast as possible.
adiabaticity constraint means that Berry’s phase gates wil
slow, thereby reducing the effective quality factor of t
quantum computer.

Another drawback of the adiabatic phase gate is that d
ing the adiabatic evolution, both geometric and dynam
phases are acquired. The latter is not tolerant to area pre
ing noise and must be removed. This could be done us
refocusing schemes, analogous to spin echo, which req
going over the adiabatic evolution twice@7–9#. However,
this further increases the time required to realize a sin
phase gate and imperfect operation will cause the dyna
phase not to cancel completely, thereby introducing erro

A third difficulty is that adiabatic geometric phases a
only possible if nontrivial loops are available in the space
parameters controlling the qubit’s evolution. In other wor
the single-qubit Hamiltonian must be of the form

H5
1

2
Bx~ t !sx1

1

2
By~ t !sy1

1

2
Bz~ t !sz , ~1!

where control over all three~effective! fields Bi(t) is pos-
sible. Such control is not possible in many of the curre
proposals for solid-state quantum computer architectu
Control over only two fields, sayBx andBz , is usually the
norm. In this case, all loops in parameter space are limite
the x-z plane and the~relative! Berry phase is limited to
integer multiples of 2p, of no use for computation. Contro
over fields in all three directions is possible in nuclear m
netic resonance~NMR!, where the Berry phase gates ha
been implemented experimentally@7#. More recently, Falci
et al. @9# have extended the original superconducting cha
qubit proposal@17# from a symmetric to an asymmetric de
sign to allow a nonzeroBy and, therefore, nontrivial close
paths in parameter space.

This need for external control of many terms in the sing
qubit Hamiltonian means additional constraints, experim
tal difficulties, and sources of noise and decoherence. Th
clearly contrary to the efforts now invested in reducing qu
tum computer design complexity using the approach of
coded universality@19#.

As we shall see, all of the above issues, namely, s
evolution, need for refocusing and control over many eff
tive fields, seem to be resolved when one considers the n
diabatic generalization of the Berry’s phase: the Aharon
Anandan~AA ! phase.

The latter is introduced by restricting oneself, for a giv
H(t), to initial states which satisfy

uc~t!&5U~t!uc~0!&5eifuc~0!&. ~2!

For nonadiabatic evolutions, these so-called cyclic ini
states @20# are generally not eigenstates of the system
01230
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Hamiltonian but of the evolution operator. Aharonov a
Anandan@15# have shown that the total phasef acquired by
such a cyclic initial state in the interval@0,t#, on which it is
cyclic is given by the sum of a dynamic (\51),

d52E
0

t

dt^c~ t !uH~ t !uc~ t !&, ~3!

and of a geometric contribution,

b5f2d. ~4!

The latter is the AA phase. This result is exact, it does
rest on an adiabatic approximationbut, it is restricted to cy-
clic initial states, for which Eq.~2! holds.

The AA phase is not associated to a closed loop in par
eter space, as in Berry’s case, but rather to a closed loopC*
in projective Hilbert space@15#. For a ~pseudo! spin 1/2,
which is the system of interest for quantum computationb
is equal to plus or minus half of the solid angle enclosed
the Bloch vectorb(t) on the Bloch sphere. Recall that th
Bloch vector is defined through the density matrix as

r~ t !5uc~ t !&^c~ t !u5
1

2
@11b~ t !•s#, ~5!

where 1 is the identity matrix ands the vector of Pauli
matrices.

Let us now consider the AA phase as a tool for quant
computation. The first of the above-mentioned issues w
the adiabatic phase has already been solved as the adia
ity constraint has been relaxed by choosing appropriate
clic initial states, which depend on the particular evoluti
we are interested in.

The second drawback of the adiabatic phase is solved
choosing evolutions such that

^c~ t !uH~ t !uc~ t !&50 ~6!

at all times. The dynamic contribution~3! is thus zero and
only a geometric AA phase is acquired overC* . For Eq.~6!
to be zero at all time, the axis of rotation must always
orthogonal to the state vector. The corresponding paths
then spherical polygons, where each segment lies alon
great circle on the Bloch sphere. It is a clear advantage of
AA phase for computation that such paths exist since ther
then no need for cancellation of the dynamic phase us
refocusing techniques.

To address the third issue, we restrict our attention
Hamiltonians, for which only two control fields are nonzer

H5
1

2
Bx~ t !sx1

1

2
Bz~ t !sz . ~7!

If one can turn on and tune the coefficients ofsx andsz
simultaneously, the following evolution is possible:

Rz
AA~u![Rx~p/2!Rn~p!Rx~p/2!, ~8!

with n5(2cosu,0,sinu) andBn5ABx
21Bz

2. This operation
acts asRz

AA(u) u0&5e2 iuu0&. Figure 1~a! is a plot of this
path on the Bloch sphere. Since this path satisfies Eq.~6!, the
8-2
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EFFECT OF NOISE ON GEOMETRIC LOGIC GATES . . . PHYSICAL REVIEW A 67, 012308 ~2003!
dynamic phase is zero for this evolution and, as a result,
geometric AA phase is just2u. By varying the angle of the
axis of rotationu, it is possible to obtain any geometr
phases. Incidentally, in implementations for which the fie
Bx and Bz cannot be nonzero simultaneously, one is
stricted ton56z and hence to multiples ofp/2 for u.

This operation can be implemented, for example, with
symmetric superconducting charge qubit@17#, Fig. 1~b!, by
using the sequence of flux and gate voltage of Fig. 1~c!. This
is similar to what was suggested recently in Ref.@16#. Fig-
ures 2~a! and 2~b! show, respectively, the angleu and the
magnitude of the effective fieldBn for Rn(p) as a function
of gate voltage and external flux applied on the charge qu
Here, Bz54Ec(122ng) and Bx52EJcos(pFx /F0), where
F05h/2e is the flux quantum andEc and EJ are, respec-
tively, the charging and Josephson energies@17#. Because of
the dependence ofBn on the external parameters, the tim
tn5p/Bn required to implementRn(p) depends on the de
sired geometric phaseu, Fig. 2~c!.

The gate sequence~8! on the superposition (au0&
1bu1&)/A2 yields

1

A2
~ae2 iuu0&1be1 iuu1&) ~9!

and the phase difference betweenu0& andu1& has observable
consequences. While this final state depends on the AA p
of the evolution ofu0& and u1& separately, it is not a cyclic
evolution when acting on their superposition.

For the adiabatic~Berry! phase, a similar situation doe
not cause any ambiguities. In that case, as stated earli
superposition of eigenstates does not yield a cyclic evolu
for the state vector either. Nevertheless, the phase acqu
by each eigenstate still has a contribution, which is geom
ric in nature since cyclicity is not required in projective spa
but in the Hamiltonian parameter space@18#.

FIG. 1. ~a! Evolution of the Bloch vector on the Bloch sphe
for the sequence of pulses~8!. The initial ~cyclic! state vector isu0&.
Starting withu1& yields a similar path but centered on the south p
of the Bloch sphere.~b! Symmetric charge qubit. The control pa
rameters are the gate voltageVg and the external fluxFx . ~c!
Sequence of the external fluxFx and the dimensionless gate char
ng implementingRz

AA(u). The gate charge is related to the ga
voltage byng5CgVg/2e. Relative amplitude of flux and gate volt
age duringRn(p) is used to tuneu, see Fig. 2.
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In the nonadiabatic case, however, there is clearly
closed loop on the Bloch sphere, as shown on Fig. 3,
identifying the AA phase according to Aharonov and Ana
dan’s original definition is more subtle. This situation h
suggested to some authors@22# that the AA phase is no
observable for any evolution on an isolated quantum syst
The reason is that the AA phase is defined only for cyc
evolutions and, since global phase factors are not phys
observable properties are unchanged for such evolutions

While a non-Abelian version of the nonadiabatic pha
can be defined and the phase factors in Eq.~9! can be seen as
geometric@23#, a direct observation of the AA phase as in t
NMR experiment of Suteret al. @24# is interesting but will
require more than one qubit. In the language of quant
computation, the analog of this NMR experiment is to us
second qubit to ‘‘monitor’’ the phase on the first one. Expli
itly, start with a two-qubit state assuming the first qubit is
an arbitrary linear superposition,

~au0&1bu1&)u0&. ~10!

Then, apply the sequence~8! on the second qubit, condition
ally on the first qubit to beu1&,

CR
z
AA[CNOT Rz2

AA~2u/2!CNOT Rz2
AA~u/2!

5S 1

1

e2 iu

e1 iu

D . ~11!

The operationCNOT is the controlled-NOT operation applied
on the two qubits, the first one acting as control.Rz2

AA

(6u/2) is Eq. ~8! applied on the second qubit only. Th
yields

CR
z
AA~au00&1bu10&)5au00&1be2 iuu10&

5~au0&1e2 iubu1&)u0&. ~12!

The net result is equivalent to a geometric phase gate on
first qubit. It can be observed from the first qubit by interfe
ence@25#. There is no ambiguity in defining the AA phase
this situation : The second qubit undergoes a cyclic evolut
and its phase is measurable since the evolution of the t
system is not cyclic.

The controlled-NOT operation can be realized as

CNOT5e2 i3p/4Rx2~3p/2!CP~3p/2!Rz2~p/2!

3Rx2~p/2!Rz2~p/2!Rz1~p/2!CP~3p/2!. ~13!

This particular sequence is specific to quantum compu
implementations having the control phase-shift gate

CP~g!5e2 igsz^ sz/2 ~14!

in their repertory but similar sequences can be found
other implementations. For the charge qubit, such asz
^ sz , interaction can be implemented by capacitive coupl
@9#.
8-3
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A. BLAIS AND A.-M. S. TREMBLAY PHYSICAL REVIEW A 67, 012308 ~2003!
Using Eqs.~8! and ~13!, it is possible by inspection to
‘‘compile’’ the total sequence~11! from 23(713)520
down to 18 elementary operations. Moreover, one can ve
that the dynamic phase cancels in Eq.~11!. This, therefore,
corresponds to a purely geometric two-qubit operation. T
logic gate, however, involves the application of 18 elem

FIG. 2. ~a! Possible values of the geometric phaseu
5arctan@2Ec(2ng21)/EJ cos(pFx /F0)# for the symmetric supercon
ducting charge qubit as a function of gate chargeng and external
flux Fx of the rotationRn(p). The characteristic energies of th
qubit are chosen as in Ref.@21#: EJ50.6 K andEc51.35 K. The
relative phase 2u can be chosen in the full range@0,2p# by an
appropriate choice of the control parameters.~b! Magnitude of the
effective fieldBn as a function of the external parameters.~c! Total
running time ofRz

AA(u) ~in picoseconds! as a function of externa
control parameters of theRn(p) operation in Eq.~8!. We assume
that theRx(p/2) part of the operation is performed at the fast
possible rate. Due to limitations of voltage and current~i.e., flux!
pulse generators, actual running time may be larger@21#. Finite rise
time of the pulses was not taken into account.
01230
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tary gates, a number that is quite large for a gate wh
purpose is to implement a ‘‘noiseless’’~geometric! phase-
shift gate.

III. TOLERANCE TO NOISE IN CONTROL PARAMETERS

A central issue to address in a pragmatic way is tolera
to imperfections. If nonadiabatic geometric logic gates are
be useful for computation, there should be some toleranc
fluctuations in the control parameters. Fluctuations of
control fields will introduce imperfections in the angles a
axes of rotation of the gates implementing the geome
evolution. These imperfections change the overall unit
evolution applied on the qubit and the corresponding fi
phase may now have a dynamic component. It is import
to note that whether the imperfections affect the dynamic
the geometric component is not relevant for our analy
Any unwanted phase factor represents an error on the q
tum computation. In the following, we thus focus on th
errors on the total phase coming from fluctuations in
control parameters around the values that are neede
achieve the desired unitary transformations in the nonfluc
ating case.

Let us consider first the effect of the simplest of su
errors: an errore in the angle of the first gate of the sequen
~8!,

Rx~p/2!Rn~p!Rx~p/21e!. ~15!

We do not consider the extra gates~11! for the moment.
Evidently, this is not an area preserving error and one sho
not expect the AA phase to be invariant in this circumstan
However, this is exactly the type of errors which will occur
the control fieldBx(t) is fluctuating.

That the nonadiabatic phase gate is not tolerant to
error is easily checked by applying the erroneous seque
~15! on the stateu0& to obtain

cos~e/2!e2 iuu0&2 i sin~e/2!e1 iuu1&. ~16!

The evolution is not cyclic anymore and we cannot defi
the AA phase in this situation~at least not in the computa
tional basis!. In other words, the computational basis do
not coincide anymore with the basis of cyclic states of
new evolution operator. Note that to first order ine, the
noncyclicity remains and, therefore, nonadiabatic ph
gates are not tolerant to small imperfections. Small err
can take the state vector out of great circles and bring i
dynamical contribution. In worse cases, as above, the ev
tion is no longer cyclic and the AA phase can no longer
defined in the computational basis.

It is possible to get a more complete picture of the eff
of random noise on the nonadiabatic phase gate and see
it compares to the simpler dynamic phase gate,

Rz~u!5e2 iu sz/2 ~17!

by studying the Hamiltonian

H5
1

2 (
i 5x,z

@Bi~ t !1dBi~ t !#s i . ~18!

t

8-4
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EFFECT OF NOISE ON GEOMETRIC LOGIC GATES . . . PHYSICAL REVIEW A 67, 012308 ~2003!
Here,dBi represents fluctuations of the control fieldBi . It is
believed that fluctuations of the control fields are the m
damaging sources of noise and decoherence for solid-
qubits @17#. For the charge qubit of Fig. 1~b!, this corre-
sponds to Nyquist-Johnson noise in the gate voltageVg and
in the current generating the fluxFx .

Without noise,Rz
AA(u/2) andRz(u) have the same effect

To compare these gates in the presence of noise, we sim
use the composition property of the evolution operator,

U~ t !5Te2 i *0
t dt8H(t8)5 lim

N→`
)
n51

N

U~n!, ~19!

whereU(n)5exp@2iH(n) t/N# andH(n) is the Hamiltonian
during thenth interval. We use units where\51. To simu-
late noise, the fieldsdBi(n) are chosen as independent ra
dom variables drawn from a uniform probability distributio
in the interval6dBmax. Without noise, the decompositio
~19! is of course exact, whatever the value ofN, since the
logic operationsRz

AA(u/2) and Rz(u) are implemented by
piecewise constant Hamiltonians. With noise, we assume
the dBi are time independent during the intervalDt[t/Ni .
We then defineDt as the noise correlation time. It will b
assumed to be the same during the application of any
ementary operationRi . With the decomposition of Eq.~19!,
the evolution is explicitly unitary.

To compare the two operations, we compute the trace
tance@26#

D~U,V!5Tr$A~U2V!†~U2V!% ~20!

with respect to the noiselessRz(u) gate. We reached th
same conclusions when the average fidelity@27# was used
numerically to compare noisy and noiseless gates. The t
distance D(U,V) takes values between 0 and 4, wi
D(U,V)50 only for U and V equal. Thus, if the nonadia
batic gate is to be more tolerant to noise than its dyna
counterpart then

D„R̃z
AA~u/2!,Rz~u!…,D„R̃z~u!,Rz~u!… ~21!

should hold. The tilde is used here to denote noisy lo
gates.

FIG. 3. The sequence of rotations~8! applied on the superposi
tion of states (u0&1u1&)/A2 does not yield a closed path on th
Bloch sphere.
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To compute the distance, we expandU(n) in Eq. ~19! to
first order indB and t/N and average the distance obtain
from this approximation by applying the central limit the
rem to the variablesXi[( i 51

N dBi(n). In addition, we note
that the time necessary to completeRi(f) is t i5NiDt
5f/Bi . For the geometric gate, this leads toNnBn
52NxBx since the rotation angles involved in Eq.~8! arep
andp/2, respectively. In this way, we obtain in the presen
of noise alongx andz,

^D„R̃z
AA~u/2!,Rz~u!…&'Ap3

12 S 1

Bx
2

1
1

BxBn
D dBmax

ANx

;

~22a!

^D„R̃z~u!,Rz~u!…&'Ap

6

u dBmax/Bz

ANz

, ~22b!

whereBx , Bn , and Bz are the magnitudes of the effectiv
fields used to implement, respectively,Rx(p/2), Rn(p), and
Rz(u). As Ni gets smaller, the noise is constant on a larg
portion of the evolution and excursions on the Bloch sph
farther away from the original path are possible. The dista
between the noisy and noiseless gates, therefore, increas
Ni diminishes.

Figure 4 shows a numerical verification of these relatio
The weak dependence of̂D„R̃z

AA(u/2),Rz(u)…& on u

throughBn is apparent in Fig. 4~a!. For ^D„R̃z(u),Rz(u)…&,
the dependence goes asAu since Nz}u, Fig. 4~b!. The
agreement between the analytical and numerical result
very good, with an error of about 3% in both cases. O
first-order estimates are then enough for this level of no
Systems where the noise is of larger amplitude will m
probably not be relevant for quantum computation so, for
practical purposes, this approximation should be enough

Using the analytical estimates~22!, the criterion~21!, and
taking the noise correlation time to be equal for dynamic a
geometric gates, we obtain a bound on the angleu, beyond
which the geometric gate becomes favorable over the
namic one,

ub.pS Bz

Bx
1

Bz

Bn
D . ~23!

Taking Bz /Bx'Bz /Bn'1, we obtain that forub*2p, the
geometric gate will be less affected by noise than its dyna
counterpart. For the charge qubit,Bz and Bx are fixed, re-
spectively, by the charging energyEc and Josephson energ
EJ . To encode efficiently information in the charge degree
freedom, the inequalityEC@EJ must be satisfied@17#. The
bound obtained withBz /Bx'Bz /Bn'1 is, therefore, a lower
bound onub . Since ub.2p, the nonadiabatic geometri
gate is never useful in practice. In particular, with the en
gies used in Fig. 2, we obtainub*2.5p as a lower bound.
More generally, since the logical states of a qubit are
eigenstates ofsz , Bz should be larger thanBx for the logical
basis to be the ‘‘good’’ basis. We, therefore, expect this low
bound to hold for most quantum computer architectures.
8-5



q

m

al

t
o
e

s t
es
o

ua
o

R

e
l

i

e

a
-
ain
e

e

ha
a
m

en

g
te
io
-

to
an

tu-
se

ec-
the
ctor
the
be
a-
se-
oint
rea

ror

oise
e
-
dy-

ned
vo-

are
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We also obtained the analogs of the above results E
~22! and~23! when the noise is alongz only and also found
the geometric gate more sensitive to noise than the dyna
cal one.

The effect of decoherence on the AA phase gate was
studied numerically by Naziret al. for nonunitary evolutions
@28#. They reach the same conclusion on the sensitivity
noise of the AA phase gate. Since they can deal with m
general noise than we do here, their approach is more gen
than ours but is entirely numerical. Our objective here wa
include only the kind of noise, to which geometric gat
were previously suggested to be tolerant: unitary rand
noise about the path.

The approach used here to quantify the effect of fluct
tions can be used for Berry’s phase gates as well. We c
sider the pulse sequence used in the NMR experiment of
@7# and simplified in Ref.@28#. The system Hamiltonian now
takes the form

H5
D

2
sz1

v1

2
~cosf sx1sinfsy!. ~24!

The sequence of operations used in Ref.@7# starts with the
field along thez axis (v150). The parameterD is assumed
fixed throughout. The field is first adiabatically tilted in th
x-z plane by increasingv1 at f50 up to some maxima
value v1 max. The field now makes an angleucone

5arccos(D/AD21v1 max
2 ) with respect to thez axis. With

v1 kept constant,f is then adiabatically swept fromf50 to
f52p. To obtain a purely geometric operation, the dynam
phase is refocused by repeating the above operations in
verse between a pair of fastRy(p) rotations. The final rela-
tive phase is then purely geometric and has the valug
54p(12cosucone) @7#.

To study the effect of noise for this sequence, we ag
use the composition property~19! and a Trotter decomposi
tion for Eq. ~24!. In the same way as above, we then obt
in the case of noise alongx, y, andz and assuming that th
Ry(p) rotations are noiseless,

^D„R̃z
Berry~g!,Rz~g!…&'

4

A3p
dBmaxATT

2

NT
1

Tf
2

Nf
,

~25!

whereTT is the time taken to tilt the field in thex-z plane
andTf is the time for thef sweep. As in Eq.~22!, the larger
NT and Nf are the smaller is the noise correlation tim
Agreement of this result with numerical calculations~not
shown! is excellent. The adiabaticity constraint means t
TT andTf must be large and, therefore, that for all practic
purposes, the Berry’s phase gate is worse than its dyna
equivalent. The conclusion is the same for all the differ
types of noise tested numerically. For thev1 tilt, these are
noise alongx only and uncorrelated noise alongx andz. For
the f sweep, we took identical noise alongx and y, and
tested its effect with and without uncorrelated noise alonz.
Because of the adiabatic constraint, the Berry’s phase ga
also worse than the AA phase gate. This is the conclus
reached as well in Ref.@28# in the case of nonunitary evolu
01230
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tions. The possibility@8# to find a point of operation, where
conditional phase shifts are insensitive, to linear order,
noise inv1(Bx) may however, in very special cases, be
advantage of Berry-phase gates for coupled qubits.

The overall results of this section can be understood in
itively rather simply. To implement logical gates that u
geometric phases~adiabatic or not!, one needs to apply a
sequence of unitary transformations that take the Bloch v
tor around a closed path. In the presence of noise in
control fields, that sequence does not take the Bloch ve
around a closed path anymore. Since all that counts is
overall phase of the unitary transformation, this phase will
more affected in the long sequences of unitary transform
tions necessary for geometric gates than in the shorter
quences necessary for purely dynamical gates. We may p
out that if the noise has a special symmetry that makes it a
preserving then this symmetry might allow quantum er
correction @2#, decoherence-free subspaces@3,4#, or bang-

FIG. 4. Trace distance as a function ofu and maximum ampli-
tude of the noise averaged over 600 realizations of the noise. N
is alongx andz and is in units of the maximal value of the effectiv
field in the z direction Bz54Ec . ~a! Averaged trace distance be
tween a noisy AA-phase gate and the corresponding noiseless
namicRz gate. The inset shows a path with random noise obtai
from the numerical calculation. The path is not closed and the e
lution is not cyclic.~b! Similar to ~a! but for the noisy dynamic gate
Rz . In both cases, the noise correlation time is taken asDt
5\/(4Ecg) with g5300. The charging and Josephson energies
taken as in Fig. 2.
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bang techniques@5# to be used with more success than ge
metric gates.

IV. CONCLUSION

In summary, we have considered the AA phase as a
for quantum computation. This phase solves many of
problems of the Berry’s phase gate. Namely, it can be imp
mented faster, does not require refocusing of a dynamic c
ponent, and involves control over only two effective fields
the one-qubit Hamiltonian. We showed how the AA phase
one qubit can be monitored by a second qubit without ex
dynamical phase. As an example, details of the impleme
tion of the AA phase with a symmetric charge qubit we
given. Application of these ideas to other quantum compu
architectures is a simple generalization.

When the effect of noise in the control parameters is ta
into account, it appears that practical implementations
logical gates based on geometric phase ideas, both adia
and nonadiabatic, are more sensitive to noise than pu
dynamic ones, contrary to what was previously claimed.
have checked how noise affects the overall unitary trans
mations that, in the noiseless case, implement purely g
metric logical gates. The analytical results were confirm
numerically and for a wide range of noise symmetries. T
is in agreement with the recent work of Ref.@28#. In the
a
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Ve
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present work, however, we focused our attention on the t
of noise, to which the geometric logical gates were pre
ously assumed to be tolerant.

The use of the AA phase for quantum computation p
poses, therefore, seems to be of little practical interest. I
however, of fundamental interest to observe this phase a
direct observation with the symmetric superconduct
charge qubit seems possible.
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